TMA 4115 Matematikk 3 Lecture 12 for MTFYMA

Alexander Schmeding

NTNU

17. February 2016

In this lecture we discuss

- Solving linear systems (Recap)
- Linear (in-)dependence of vectors...
- ... what this means for solutions of linear systems

Linear sytems and associated equations

Multiplication Matrix \times Vector

For $A = [\overrightarrow{a_1} \ \overrightarrow{a_2} \ \dots \ \overrightarrow{a_k}]$ and $\overrightarrow{x} = (x_1, x_2, \dots, x_k)$ we defined

$$A\overrightarrow{x} = x_1\overrightarrow{a_1} + x_2\overrightarrow{a_2} + \dots + x_k\overrightarrow{a_k}$$

Note: The product is a linear combination of the columns of A.

Linear system \leftrightarrow vector equation $\sum_{i=1}^{k} r_i \overrightarrow{a_i} = \overrightarrow{b}$ \leftrightarrow matrix equation $A\overrightarrow{x} = \overrightarrow{b}$

To solve the equations apply Gaussian elimination to $[A\overrightarrow{b}]$

Linear sytems and associated equations II

A linear system is **homogeneous** if we can write it as $A\overrightarrow{x} = \overrightarrow{0}$.

The general solution to $A\overrightarrow{x} = \overrightarrow{b}$ in parametric vector form is:

$$\overrightarrow{x} = \overrightarrow{v_p} + r_1 \overrightarrow{v_1} + \ldots + r_k \overrightarrow{v_k}$$

where $\overrightarrow{v_p}$ is a particular solution to $A\overrightarrow{x} = \overrightarrow{b}$ and $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ are the solutions of $A\overrightarrow{x} = \overrightarrow{0}$ associated to the free variables.

Solutions of matrix equations

We were interested in the following questions about $A\overrightarrow{x} = \overrightarrow{b}$

- 1. Is there a solution at all (i.e. is the system consistent)?
- 2. Is there a unique solution?
 For A = [a₁ a₂ ... a_n] question 1 can be rephrased as:
 Is b ∈ span{a₁,..., a_n}?

What about the second question?

Idea: The general solution of $A\overrightarrow{x} = \overrightarrow{b}$ will produce a unique solution if $A\overrightarrow{x} = \overrightarrow{0}$ has a unique solution.

The trivial solution $\overrightarrow{0}$ always exists. Hence, $A\overrightarrow{x} = \overrightarrow{0}$ has a unique solution if and only if $\overrightarrow{0}$ is the only solution.

Summary: span and linear (in-)dependence

Let
$$\overrightarrow{v_1}, \ldots, \overrightarrow{v_p}$$
 be vectors and $A = \begin{bmatrix} \overrightarrow{v_1} & \overrightarrow{v_2} & \ldots & \overrightarrow{v_p} \end{bmatrix}$.

• span{ $\overrightarrow{v_1}, \ldots, \overrightarrow{v_p}$ } is the set of all vectors which can be generated from $\overrightarrow{v_1}, \ldots, \overrightarrow{v_p}$.

Test for
$$\overrightarrow{b} \in \text{span} \{ \overrightarrow{v_1}, \dots, \overrightarrow{v_p} \}$$

If $A\overrightarrow{x} = \overrightarrow{b}$ is consistent, \overrightarrow{b} is in the span.

• Linear (in-)dependence is about redundancy, i.e. whether we can combine vectors from fewer vectors.

Test for linear (in-)dependence of $\{\overrightarrow{v_1}, \ldots, \overrightarrow{v_p}\}$

If $[A\overrightarrow{0}]$ contains only basic variables, the family is linearly independent. Otherwise, the family is linearly dependent.

Moral: Use Gaussian elimination to settle these questions!