TMA 4115 Matematikk 3
 Lecture 13 for MTFYMA

Alexander Schmeding

NTNU

22. February 2016

- continue example how linearly independent subfamilies are obtained,
- dynamic view of matrices (matrix transformations)

A family of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are called

- linearly independent if

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i} \vec{v}_{i}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

only admits the trivial solution $r_{1}=r_{2}=\ldots=r_{n}=0$.

- If (1) admits a non trivial solution (at least one $\left.r_{i} \neq 0\right)$ then the vectors are linearly dependent (call (1) linear dependency relation).

Test for linear independence

Use Gaussian elimination on the matrix $\left[\vec{v}_{1} \vec{v}_{2} \ldots \vec{v}_{k}\right.$]. The vectors are linearly independent if and only if every column is a pivot column.

Example (How to generate a linearly independent subfamily)

Find a linearly independent subfamilie with the same span as $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad \begin{aligned} & \text { linearly } \\ & \text { independent } \\ & \text { subfamily: }\end{aligned}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
$\underset{\text { coefficient matrix }}{\rightsquigarrow}\left[\begin{array}{lllll}1 & 4 & 0 & 0 & 1 \\ 2 & 5 & 1 & 1 & 1 \\ 3 & 6 & 1 & 0 & 1\end{array}\right]$
Gaussian elimination ${ }^{\rightsquigarrow}\left[\begin{array}{ccccc}1 & 4 & 0 & 0 & 1 \\ 0 & -3 & 1 & 1 & -1 \\ 0 & -6 & 1 & 0 & -2\end{array}\right]$

The vectors corresponding to basic variables form a linearly independent subfamily (with the same span)

Matrix transformations

In the equation $A \vec{x}=\vec{b}, A$ and \vec{b} are fixed and we search for \vec{x}
However, Matrix multiplication allows us to apply A to arbitrary
vectors, e.g. $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ compute

$$
A \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \quad A \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

Change view of Matrices to a more dynamic concept: Matrices as "machines that transform vectors".

Applying matrices to 2D boxes

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \quad \vec{a}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
B=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right], \quad \vec{a}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

A : shear transformation

B : reflection (along red line)
Goal for lecture: View the transformations attached to matrices as functions and study their properties!

