TMA 4115 Matematikk 3 Lecture 13 for MTFYMA

Alexander Schmeding

NTNU

22. February 2016

- continue example how linearly independent subfamilies are obtained,
- dynamic view of matrices (matrix transformations)

A family of vectors $\overrightarrow{v}_1, \ldots, \overrightarrow{v}_k$ are called

• linearly independent if

$$\sum_{i=1}^{n} r_i \overrightarrow{v}_i = \overrightarrow{0}$$
 (1)

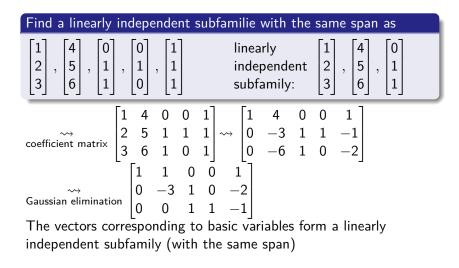
only admits the trivial solution $r_1 = r_2 = \ldots = r_n = 0$.

• If (1) admits a non trivial solution (at least one $r_i \neq 0$) then the vectors are linearly dependent (call (1) linear dependency relation).

Test for linear independence

Use Gaussian elimination on the matrix $[\overrightarrow{v}_1 \ \overrightarrow{v}_2 \dots \overrightarrow{v}_k]$. The vectors are linearly independent if and only if every column is a pivot column.

Example (How to generate a linearly independent subfamily)



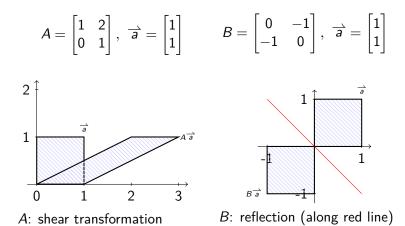
Matrix transformations

In the equation $A\overrightarrow{x} = \overrightarrow{b}$, A and \overrightarrow{b} are fixed and we search for \overrightarrow{x}

However, Matrix multiplication allows us to apply A to arbitrary vectors, e.g. $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ compute $A \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \quad A \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$

Change view of Matrices to a more dynamic concept: Matrices as "machines that transform vectors".

Applying matrices to 2D boxes



Goal for lecture: View the transformations attached to matrices as functions and study their properties!