TMA 4115 Matematikk 3
 Lecture 15 for MTFYMA

Alexander Schmeding

NTNU

29. February 2016

In this lecture we will discuss

- Matrix algebra (i.e. adding and multiplying matrices)
- Inverse matrices

Matrix $A \rightarrow$ linear transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto A \vec{x}$
$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear \rightarrow standard matrix $\left[\begin{array}{lll}T\left(\overrightarrow{e_{1}}\right) & \ldots & T\left(\overrightarrow{e_{n}}\right)\end{array}\right]$
Formulate questions about $A \vec{x}=\vec{b}$ in the language of linear transformations. Recall $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is

- onto if each $\vec{b} \in \mathbb{R}^{m}$ can be written as $\vec{b}=T(\vec{x})$ for at least one \vec{x}
- one-to-one if each $\vec{b} \in \mathbb{R}^{m}$ satisfies $\vec{b}=T(\vec{x})$ for at most one \vec{x}
(In the literature: onto $=$ surjective,\quad one-to-one $=$ injective $)$

12. Matrix algebra

Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear and $r \in \mathbb{R}$. Then

$$
f+r g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto f(\stackrel{\rightharpoonup}{x})+r g(\vec{x})
$$

is linear:

$$
\begin{aligned}
(f+r g)(\vec{v}+t \vec{u}) & =f(\vec{u}+t \vec{v})+r g(\vec{u}+t \vec{v}) \\
& =(f+r g)(\vec{u})+t(f+r g)(\vec{v})
\end{aligned}
$$

For $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ linear the composition $h \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is linear.

Question:

Are the standard matrices of $(f+r g)$ and $h \circ g$ related to the standard matrices of f, g and h ?

Addition and scalar multiplication of matrices

Abbreviate: $A=\left[a_{i j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}, m \times n$-matrix with entries $a_{i j}$
Example (Writing matrices via their entries)

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=\left[a_{i j}\right]_{1 \leq i \leq 2}^{1 \leq j \leq 3}<1=\left[a_{i j}\right] \quad \begin{gathered}
\text { (Usually we suppress } \\
1 \leq i \leq m, 1 \leq j \leq n)
\end{gathered}
$$

12.1 Definition:

For $A=\left[a_{i j}\right], B=\left[b_{i j}\right] m \times n$-matrices and $r \in \mathbb{R}$, define

$$
\begin{aligned}
A+B & :=\left[a_{i j}+b_{i j}\right] \\
r A & :=\left[r a_{i j}\right]
\end{aligned}
$$

Note: Addition is only defined for matrices of the same size!

Properties of Addition and multiplication

12.2 Lemma

Let f, g be linear transformations and $r \in \mathbb{R}$, then the standard matrix of the linear map $f+r g$ is $A_{f+r g}=A_{f}+r A_{g}$.
Proof:
$(f+r g)(\vec{x})=f(\vec{x})+r g(\vec{x})=A_{f} \vec{x}+r A_{g} \vec{x}=\left(A_{f}+r A_{g}\right) \vec{x} . \square$

12.3 Rules for addition and scalar multiplication

A, B, C matrices of the same size, $r, s \in \mathbb{R}$, then

- $A+B=B+A,(A+B)+C=A+(B+C)$,
- Let 0 be the zero matrix (all entries 0), then $A+0=A$,
- $r(A+B)=r A+r B,(r+s) A=r A+s A$ and $r(s A)=(r s) A$.

Proof: Easy computations.

Standard matrix for the composition

Let f, g be linear such that $f \circ g$ is defined. For \vec{x} we compute

$$
f \circ g(\vec{x})=f(g(x))=f\left(A_{g} \vec{x}\right)=A_{f}\left(A_{g}(\vec{x})\right)
$$

Now if $A_{g}=\left[\vec{a}_{1} \ldots \vec{a}_{n}\right]$ and $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$, then we have
$f \circ g(\vec{x})=A_{f}\left(\sum_{i=1}^{n} x_{i} \vec{a}_{i}\right)=\sum_{i=1}^{n} x_{i} A_{f} \vec{a}_{i}=\left[\begin{array}{llll}A_{f} \vec{a}_{1} & \ldots & A_{f} \vec{a}_{p}\end{array}\right] \vec{x}$
12.4 Definition
$A m \times n$ matrix, $B=\left[\begin{array}{lll}\vec{b}_{1} & \cdots & \vec{b}_{p}\end{array}\right] n \times p$ matrix. Then define

$$
A B:=A \cdot B:=\left[A \vec{b}_{1} \ldots A \vec{b}_{p}\right]
$$

12.6 Remark

$(m \times n$ matrix $) \cdot(n \times p$ matrix $)=m \times p$ matrix.

12.7 Rules for matrix multiplication

For matrices A, B, C of suitable size the following rules holds:

- $A(B C)=(A B) C$,
- $A(B+C)=A B+A C$ and $(B+C) A=B A+C A$, $r(A B)=(r A) B=A(r B)$
- $I_{m} A=A=A I_{n}$ (for $A m \times n$ matrix, I_{m}, I_{n} identity matrices)

Proof: $A(B C)=(A B) C$ follows from $(f \circ g) \circ h=f \circ(g \circ h)$.
Rest: Easy computations

Matrix multiplication (diagram foom Atemmundus com)

12.8 Row formula for the matrix product

Let $A=\left[a_{i j}\right] m \times n$ matrix and $B=\left[b_{k l}\right] n \times p$ matrix such that $A B=\left[c_{r s}\right]$. Then $c_{r s}$ can be computed by the following formula

$$
c_{r s}=a_{r 1} b_{1 s}+a_{r 2} b_{2 s}+\ldots+a_{r n} b_{n s}
$$

In general $A B \neq B A$! There are $A, B \neq 0$ with $A B=0$. Matrix multiplication does not behave like multiplication in \mathbb{R} !

