TMA 4115 Matematikk 3
 Lecture 16 for MTFYMA

Alexander Schmeding

NTNU

2. March 2016

In this lecture we will...

- learn more about invertible matrices,
- introduce the LU-factorisation of matrices,
- study determinants of matrices,

Invertible matrices

A $n \times n$ square matrix A is called invertible if there is a square matrix A^{-1} with

$$
A \cdot A^{-1}=I_{n} \quad A^{-1} \cdot A=I_{n}
$$

The equation $A \vec{x}=\vec{b}$ for a $n \times n$ matrix A has a unique solution for all $\vec{b} \in \mathbb{R}^{n}$ if and only if A is invertible.

Use Gaussian elimination on $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$ to compute if A is invertible and if so, get A^{-1}.

12.18 Theorem (Invertible matrix theorem, proof textbook p.130)

The following conditions are equivalent for an $n \times n$-matrix A :
(a) A is invertible,
(b) for all $\vec{b} \in \mathbb{R}^{n}$ the equation $A \vec{x}=\vec{b}$ has a solution,
(c) the columns of A span \mathbb{R}^{n},
(d) $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \vec{x} \mapsto A \vec{x}$ is onto,
(e) A has a pivot position in every column,
(f) the reduced echelon form of A is I_{n},
(g) $A \vec{x}=\overrightarrow{0}$ has a unique solution,
(h) the columns of A are linearly independent,
(i) T_{A} is one-to-one,
(j) there is an $n \times n$ matrix D with $A D=I_{n}$,
(k) there is an $n \times n$ matrix D with $D A=I_{n}$

Given a matrix A how can we solve

$$
A \vec{x}=\vec{b}_{1}, \quad A \vec{x}=\vec{b}_{2}, A \vec{x}=\vec{b}_{3} \ldots
$$

efficiently?
If A is invertible, we could compute A^{-1} and then $A^{-1} \vec{b}_{1}, \ldots$
However, it is faster to try something different.

Example: LU factorisation of a matrix A

$$
\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
-3 & 5 & 1 & 0 \\
6 & -4 & 0 & -5 \\
-9 & 5 & -5 & 12
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
2 & -5 & 1 & 0 \\
-3 & 8 & 3 & 1
\end{array}\right]\left[\begin{array}{cccc}
3 & -7 & -2 & 2 \\
0 & -2 & -1 & 2 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

We want to solve $A \vec{x}=\left[\begin{array}{llll}-9 & 5 & 7 & 11\end{array}\right]^{T}$. Hence use LU factorisation and compute

$$
\begin{aligned}
L \vec{y} & =\vec{b} \\
U \vec{x} & =\vec{y}
\end{aligned}
$$

$\left[\begin{array}{ll}L & \vec{b}\end{array}\right]=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & -9 \\ -1 & 1 & 0 & 0 & 5 \\ 2 & -5 & 1 & 0 & 7 \\ -3 & 8 & 3 & 1 & 11\end{array}\right] \rightsquigarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & -9 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{ll}I & \vec{y}\end{array}\right]$
Thus $\vec{y}=\left[\begin{array}{llll}-9 & -4 & 5 & 1\end{array}\right]^{T}$. Now solve
$\left[\begin{array}{ll}U & \vec{y}\end{array}\right]=\left[\begin{array}{ccccc}3 & -7 & -2 & 2 & -9 \\ 0 & -2 & -1 & 2 & -4 \\ 0 & 0 & -1 & 1 & 5 \\ 0 & 0 & 0 & -1 & 1\end{array}\right] \rightsquigarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & -6 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]=\left[\begin{array}{ll}I & \vec{x}\end{array}\right]$
Hence $\vec{x}=\left[\begin{array}{llll}3 & 4 & -6 & -1\end{array}\right]^{T}$.

How to compute an LU factorisation

LU factorisation for matrix A

- Reduce A to Echelon form U using row replacement operations only (if possible)
- Place entries in L such that the same row operations reduce L to I.

The first step in the above algorithm is not always possible even if A is invertible.

One can prove that A invertible can always be decomposed as $A=P L U$, where the matrix P just interchanges rows.

Invertible 2×2 matrices

Consider $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Try to compute an inverse:

$$
\begin{aligned}
{\left[\begin{array}{llll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{cccc}
a & b & 1 & 0 \\
0 & \frac{a d-b c}{a} & -\frac{c}{a} & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & 1 & \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{cccc}
1 & 0 & \frac{-c}{a d-b c} & \frac{b}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
\end{aligned}
$$

Observation:

A is invertible if the determinant $\operatorname{det} A=a d-b c$ is not zero.
Similar for 2nd order differential equations: Wronskian is the determinant of a matrix (with functions as entries).

Question:

Can we define a "determinant" for arbitrary square matrices?

The 3×3 case

Row reduce an (invertible) 3×3 matrix (with $a_{11} \neq 0$):

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right] \\
\text { with } \Delta & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}
\end{aligned}
$$

Now A can only be invertible, if $\Delta \neq 0$.

3×3 determinants

We define
$\operatorname{det}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}$
$-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$.

To remember this formula, use the "rule of Sarrus":

How to produce a general formula for the $n \times n$-case?

Rewrite Δ for the 3×3 matrix as

$$
\begin{aligned}
\Delta= & \left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}\right)+\left(a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}\right) \\
& +\left(a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}\right) \\
= & a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
= & a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{32} & a_{31}
\end{array}\right]
\end{aligned}
$$

