TMA 4115 Matematikk 3 Lecture 17 for MTFYMA

Alexander Schmeding

NTNU

04. March 2014

In today's lecture we discuss

- Determinants (Definition and how to compute them)
- "Abstract" vector spaces

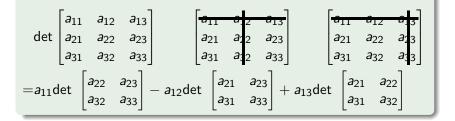
Determinants

The *determinant* of a matrix A tells us if a matrix is invertible! (Recall det $A \neq 0$ if A is invertible)

Example determinant of a 2×2 matrix

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Determinant of a 3×3 matrix



Recursive Definition of Determinants

14.1 Definition

A a $n \times n$ matrix, $1 \le i, j \le n$. Define a matrix A_{ij} by deleting in A the *i*th row and *j*th column.

14.2 Definition (**Determinant** of the matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{1 \le i, j \le n}$

For
$$n = 1$$
: det $\begin{bmatrix} a_{11} \end{bmatrix} = a_{11}$.
For $n \ge 2$ define the determinant as
det $A = a_{11}$ det $A_{11} - a_{12}$ det $A_{12} + \dots + a_{1n}$ det A_{1n}
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j}$$
det A_{1j}

An interesting observation

Linear differential equations

$$y''+2y'+y=g(x)$$

Linear systems

$$x_1 + 2x_2 - x_3 = 0$$

 $42x_1 - x_3 = 12$
 $x_2 + x_3 = 1$

Goal

Find **functions** solving the equation

Goal

Find **numbers/vectors** solving the system

Both topics are connected! (Determinants (/Wronskian), general solutions, homogeneous equations...)

Question

What is the theoretical explanation?

Reformulating Linear systems

Linear system		Matrix equation		Linear Equation
$\begin{vmatrix} x_1 + 2x_2 - x_3 = 0\\ 42x_1 - x_3 = 12\\ x_2 + x_3 = 1 \end{vmatrix}$		$A\overrightarrow{x} = \begin{bmatrix} 0\\12\\1 \end{bmatrix}$		$T_{\mathcal{A}}(\overrightarrow{x}) = \begin{bmatrix} 0\\12\\1 \end{bmatrix}$
	\leftrightarrow	Matrix A	\leftrightarrow	
		$\begin{bmatrix} 1 & 2 & -1 \\ 42 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$		linear/matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3.$

Question

Can we view a linear differential equation in the same way?

Linear transformations (on functions?)

Consider the 2nd order equation
$$\underbrace{y'' + 2y' + y}_{=:T(y)} = g(t)$$

Then T is a transformation for functions:

У	T(y) = y'' + 2y' + y		
e^t	$4e^t$		
sin(t)	$2\cos(t)$		
$\cos(t)$	$-2\sin(t)$		
t	t		
t^2	$2 + 2t + t^2$		

T is even "linear" (Functions behave in this example like vectors!):

$$\begin{array}{c|c} y & T(y) = y'' + 2y' + y \\ \hline e^t + \sin(t) & 4e^t + 2\cos(t) \\ t + t^2 + \cos(t) & t + 2 + 2t + t^2 - 2\sin(t) \\ 0 & 0 \end{array}$$

Functions as vectors?

Functions $f, g, h: \mathbb{R} \to \mathbb{R}$ can be added and multiplied pointwise:

•
$$(f+g)(t) := f(t) + g(t) = (g+f)(t)$$

•
$$(f + g) + h = f + (g + h)$$

• Let 0 be the function which is constant 0, then 0 + f = f = f + 0

•
$$r \cdot (s \cdot f) = (rs) \cdot f = s \cdot (r \cdot f)$$

•
$$(r+s)f = r \cdot f + s \cdot f$$

•
$$r \cdot (f+g) = r \cdot f + r \cdot g$$

•
$$f + (-1) \cdot f = f - f = 0$$

•
$$1 \cdot f = f$$

15.1 Definition (abstract) vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$

A (\mathbb{K} -)**vector space** is a non-empty set V of objects (= **vectors**), with "+" addition and

"." multiplication by scalars (=numbers \mathbb{K}). such that for vectors $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$ in V and $r, s \in \mathbb{K}$ the following holds:

•
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$
 and $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$

• There is a zero-vector $\overrightarrow{0}$ with $\overrightarrow{0} + \overrightarrow{v} = \overrightarrow{v}$

• for
$$\overrightarrow{v}$$
 there is $-\overrightarrow{v}$ with $\overrightarrow{v} + (-\overrightarrow{v}) = \overrightarrow{0} ((-1) \cdot \overrightarrow{v} = -\overrightarrow{v})$

•
$$r(u + v) = ru + rv$$

• $(r+s)\overrightarrow{v} = r\overrightarrow{v} + s\overrightarrow{v}$

•
$$(rs)\overrightarrow{v} = r(s\overrightarrow{v})$$

•
$$1\overrightarrow{v}=\overrightarrow{v}$$

Normally consider only \mathbb{R} -vector spaces, so $\mathbb{K} = \mathbb{R}$.

Vector spaces

(Most important) Example

 \mathbb{R}^n is a vector space.

If you have trouble with abstract vector spaces, always think of how things work in \mathbb{R}^{n} !

Vector spaces generalize \mathbb{R}^n . Thus they show

- what properties in \mathbb{R}^n are important for linear algebra,
- how to extend linear algebra to more general situations.