TMA 4115 Matematikk 3
 Lecture 17 for MTFYMA

Alexander Schmeding

NTNU

4. March 2014

In today's lecture we discuss

- Determinants (Definition and how to compute them)
- "Abstract" vector spaces

Determinants

The determinant of a matrix A tells us if a matrix is invertible! (Recall $\operatorname{det} A \neq 0$ if A is invertible)

Example determinant of a 2×2 matrix

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

Determinant of a 3×3 matrix

$\operatorname{det}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
$\left[\begin{array}{lll}a_{11} & a_{2} & a_{13} \\ a_{21} & a_{2} & a_{23} \\ a_{31} & a_{1} & a_{33}\end{array}\right]$
$\left[\begin{array}{lll}a_{11} & a_{12} & a_{3} \\ a_{21} & a_{22} & a_{3} \\ a_{31} & a_{32} & a J_{3}\end{array}\right]$
$=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Recursive Definition of Determinants

14.1 Definition

A a $n \times n$ matrix, $1 \leq i, j \leq n$.
Define a matrix $A_{i j}$ by deleting in A the i th row and j th column.
14.2 Definition (Determinant of the matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$)

For $n=1$: $\quad \operatorname{det}\left[a_{11}\right]=a_{11}$.
For $n \geq 2$ define the determinant as

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+a_{1 n} \operatorname{det} A_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j}
\end{aligned}
$$

An interesting observation

Linear differential equations

$$
y^{\prime \prime}+2 y^{\prime}+y=g(x)
$$

Goal
Find functions solving the equation

Linear systems

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =0 \\
42 x_{1}-x_{3} & =12 \\
x_{2}+x_{3} & =1
\end{aligned}
$$

Goal

Find numbers/vectors solving the system

Both topics are connected! (Determinants (/Wronskian), general solutions, homogeneous equations...)

Question

What is the theoretical explanation?

Reformulating Linear systems

Linear system
$x_{1}+2 x_{2}-x_{3}=0$
$42 x_{1}-x_{3}=12$
$x_{2}+x_{3}=1$

\leftrightarrow| Matrix equation |
| :---: |
| $A \vec{x}=\left[\begin{array}{c}0 \\ 12 \\ 1\end{array}\right]$ |
| Matrix A |
| $\left[\begin{array}{ccc}1 & 2 & -1 \\ 42 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$ |\leftrightarrow

Linear Equation
 $$
T_{A}(\vec{x})=\left[\begin{array}{c} 0 \\ 12 \\ 1 \end{array}\right]
$$
 linear/matrix transformation

$$
T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

Question

Can we view a linear differential equation in the same way?

Linear transformations (on functions?)

Consider the 2nd order equation $\underbrace{y^{\prime \prime}+2 y^{\prime}+y}_{=: T(y)}=g(t)$
Then T is a transformation for functions:

y	$T(y)=y^{\prime \prime}+2 y^{\prime}+y$
e^{t}	$4 e^{t}$
$\sin (t)$	$2 \cos (t)$
$\cos (t)$	$-2 \sin (t)$
t	t
t^{2}	$2+2 t+t^{2}$

T is even "linear" (Functions behave in this example like vectors!):

y	$T(y)=y^{\prime \prime}+2 y^{\prime}+y$
$e^{t}+\sin (t)$	$4 e^{t}+2 \cos (t)$
$t+t^{2}+\cos (t)$	$t+2+2 t+t^{2}-2 \sin (t)$
0	0

Functions as vectors?

Functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ can be added and multiplied pointwise:

- $(f+g)(t):=f(t)+g(t)=(g+f)(t)$
- $(f+g)+h=f+(g+h)$
- Let 0 be the function which is constant 0 , then $0+f=f=f+0$
- $r \cdot(s \cdot f)=(r s) \cdot f=s \cdot(r \cdot f)$
- $(r+s) f=r \cdot f+s \cdot f$
- $r \cdot(f+g)=r \cdot f+r \cdot g$
- $f+(-1) \cdot f=f-f=0$
- $1 \cdot f=f$

15.1 Definition (abstract) vector space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$

A (\mathbb{K}-)vector space is a non-empty set V of objects (= vectors), with " + " addition and
"." multiplication by scalars (=numbers \mathbb{K}). such that for vectors $\vec{u}, \vec{v}, \vec{w}$ in V and $r, s \in \mathbb{K}$ the following holds:

- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$ and $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
- There is a zero-vector $\overrightarrow{0}$ with $\overrightarrow{0}+\vec{v}=\vec{v}$
- for \vec{v} there is $-\vec{v}$ with $\vec{v}+(-\vec{v})=\overrightarrow{0}((-1) \cdot \vec{v}=-\vec{v})$
- $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$
- $(r+s) \vec{v}=r \vec{v}+s \vec{v}$
- $(r s) \vec{v}=r(s \vec{v})$
- $1 \vec{v}=\vec{v}$

Normally consider only \mathbb{R}-vector spaces, so $\mathbb{K}=\mathbb{R}$.

Vector spaces

(Most important) Example

\mathbb{R}^{n} is a vector space.
If you have trouble with abstract vector spaces, always think of how things work in \mathbb{R}^{n} !

Vector spaces generalize \mathbb{R}^{n}. Thus they show

- what properties in \mathbb{R}^{n} are important for linear algebra,
- how to extend linear algebra to more general situations.

