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In today’s lecture we discuss
linear algebra in (abstract) vector spaces
familiar concepts (span, linear transformations) in abstract
vector spaces
row, column and nullspace of a matrix
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(Abstract) vector space

Fix K ∈ {R,C }. A (K-)vector space is a non-empty set V of
objects, called vectors, with operations “+” addition and “·”
multiplication by scalars (=numbers in K).

Vector subspace
A subspace H of V is a subset H ⊆ V such that

⇀0 ∈ H,
for ⇀v , ⇀w ∈ H and r ∈ K the sum ⇀v + r ⇀w ∈ H.

Idea: Vector spaces behave like Rn and the many important
examples arise as subspaces of Rn.
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15.4 Examples: Subspaces of R2

R2, {⇀0 } are subspaces of R2.
⇀x ∈ R2 the span {⇀x } is a subspace of R2.

Subsets of R2 which are not subspaces:
{ (1,−0.5) + r(2.2, 1.4)|r ∈ R }
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Does not contain ⇀0 !

U =
{
(x , y) ∈ R2|xy = 0

}
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(1, 0), (0, 1) ∈ U but
(1, 0) + (0, 1) = (1, 1) 6∈ U!
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More (Counter-)Examples of subspaces

For k > l we have Ck(R,R) is a subspace of C l(R,R).1

Pn (Polynomials up to order n) is a subspace of every
Ck(R,R).
R2 is not a subspace of R3!

1C k(R,R)vector space of ktimes continuously differentiable maps R → R
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Vector spaces are designed to have the features of Rn which enable
linear algebra!

Motto
Copy old definitions from Rn to arbitrary vector spaces!
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Familiar concepts now in vector spaces I

Definition
Let V be a vector space and ⇀v1 , . . . , ⇀vk ∈ V .

A linear combination of ⇀v1 , . . . , ⇀vk is a weighted sum

k∑
l=1

rl
⇀vl = r1

⇀v1 + . . . + rk
⇀vk

span {⇀v1 , . . . , ⇀vk } = set of all linear combinations of
⇀v1 , . . . , ⇀vk .
⇀v1 , . . . , ⇀vk are called linearly independent if

k∑
i=1

ri
⇀v i = r1

⇀v 1 + r2
⇀v 2 + . . . + rk

⇀v k =
⇀0

has only the trivial solution r1 = r2 = · · · = rk = 0.



Vector spaces

Familiar concepts now in vector spaces II

Definition
Let V , W be vector spaces. A function T : V →W is called a
linear transformation if for all vectors ⇀v , ⇀w and each scalar
r ∈ K the following holds

T (⇀u + r ⇀v ) = T (⇀u ) + rT (⇀v )

Examples
A a m × n matrix, the matrix transformation
TA : Rn → Rn, ⇀x 7→ A⇀x is linear
T : C∞(R,R)→ C∞(R,R), f 7→ f ′ is linear.
ev0 : C∞(R,R)→ R, f 7→ f (0) is linear.
q : C1(R,R)→ C1(R,R), f 7→ cos ◦f is not linear.
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