TMA 4115 Matematikk 3 Lecture 18 for MTFYMA

Alexander Schmeding

NTNU

09. March 2016

In today's lecture we discuss

- linear algebra in (abstract) vector spaces
- familiar concepts (span, linear transformations) in abstract vector spaces
- row, column and nullspace of a matrix

(Abstract) vector space

Fix $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. A (\mathbb{K} -)vector space is a non-empty set *V* of objects, called vectors, with operations "+" addition and "·" *multiplication* by scalars (=numbers in \mathbb{K}).

Vector subspace

A subspace
$$H$$
 of V is a subset $H \subseteq V$ such that

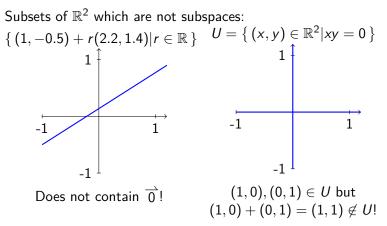
•
$$\overline{0} \in H$$
,

• for
$$\overrightarrow{v}, \overrightarrow{w} \in H$$
 and $r \in \mathbb{K}$ the sum $\overrightarrow{v} + r \overrightarrow{w} \in H$.

Idea: Vector spaces behave like \mathbb{R}^n and the many important examples arise as subspaces of \mathbb{R}^n .

15.4 Examples: Subspaces of \mathbb{R}^2

- \mathbb{R}^2 , { $\overrightarrow{0}$ } are subspaces of \mathbb{R}^2 .
- $\overrightarrow{x} \in \mathbb{R}^2$ the span $\{ \overrightarrow{x} \}$ is a subspace of \mathbb{R}^2 .



More (Counter-)Examples of subspaces

- For k > l we have $C^k(\mathbb{R}, \mathbb{R})$ is a subspace of $C^l(\mathbb{R}, \mathbb{R})$.¹
- P_n (Polynomials up to order n) is a subspace of every

 C^k(ℝ, ℝ).
- \mathbb{R}^2 is **not** a subspace of \mathbb{R}^3 !

 $^{^1}C^k(\mathbb{R},\mathbb{R})$ vector space of ktimes continuously differentiable maps $\mathbb{R} o \mathbb{R}$

Vector spaces are designed to have the features of \mathbb{R}^n which enable linear algebra!

Motto

Copy old definitions from \mathbb{R}^n to arbitrary vector spaces!

Familiar concepts now in vector spaces I

Definition

Let V be a vector space and $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k} \in V$.

• A linear combination of $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ is a weighted sum

$$\sum_{l=1}^{k} r_l \, \overrightarrow{v_l} = r_1 \, \overrightarrow{v_1} + \ldots + r_k \, \overrightarrow{v_k}$$

span { $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ } = set of all linear combinations of $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$.

• $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ are called **linearly independent** if

$$\sum_{i=1}^{k} r_i \overrightarrow{v}_i = r_1 \overrightarrow{v}_1 + r_2 \overrightarrow{v}_2 + \ldots + r_k \overrightarrow{v}_k = \overrightarrow{0}$$

has only the trivial solution $r_1 = r_2 = \cdots = r_k = 0$.

Familiar concepts now in vector spaces II

Definition

Let V, W be vector spaces. A function $T: V \to W$ is called a **linear transformation** if for all vectors \vec{v}, \vec{w} and each scalar $r \in \mathbb{K}$ the following holds

$$T(\overrightarrow{u} + r\overrightarrow{v}) = T(\overrightarrow{u}) + rT(\overrightarrow{v})$$

Examples

- A a $m \times n$ matrix, the matrix transformation $T_A \colon \mathbb{R}^n \to \mathbb{R}^n, \overrightarrow{x} \mapsto A \overrightarrow{x}$ is linear
- $T: C^{\infty}(\mathbb{R},\mathbb{R}) \to C^{\infty}(\mathbb{R},\mathbb{R}), f \mapsto f'$ is linear.
- $ev_0: C^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, f \mapsto f(0)$ is linear.
- $q: C^1(\mathbb{R}, \mathbb{R}) \to C^1(\mathbb{R}, \mathbb{R}), f \mapsto \cos \circ f$ is not linear.