TMA 4115 Matematikk 3 MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU
18. February 2016

In today's lecture we discuss...

- linear equations and their relations to vector and matrix equations
- solution sets of linear equations

Vectors

Vectors \approx ordered list of numbers.
\mathbb{R}^{n} set of vectors of length n
(i.e. vectors with n entries from \mathbb{R}).

Have operations,+- for vectors and $r \cdot \vec{v}$ for $r \in \mathbb{R}$ (or \mathbb{C}).
linear combination of vectors
$\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ is a weighted sum

$$
\sum_{l=1}^{k} r_{l} \overrightarrow{v_{l}}=r_{1} \overrightarrow{v_{1}}+\ldots+r_{k} \overrightarrow{v_{k}}
$$

$\operatorname{span}\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}=$ set of all linear combinations of $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$

A picture of $\operatorname{span}\{(1,1,1),(1,0,0)\}$

The vectors are not multiples of each other (and both are not $\overrightarrow{0}$), so they span a plane in \mathbb{R}^{3}.

Linear Equations in chemistry

We want to balance the reaction equation

$$
\begin{aligned}
& \text { Ethanol }+ \text { Oxygen } \longrightarrow \text { Carbondioxide }+ \text { Water } \\
& \qquad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Introduce indeterminates $x_{1}, x_{2}, x_{3}, x_{4}$ and write

$$
x_{1} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+x_{2} \mathrm{O}_{2}=x_{3} \mathrm{CO}_{2}+x_{4} \mathrm{H}_{2} \mathrm{O}
$$

Note: $x_{1} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ has $2 x_{1}$ atoms of carbon, $6 x_{1}$ atoms of hydrogen and x_{1} atoms of oxygen.

Idea

To generate a system of linear equations we generate an equation for each type of atom in the equation.

Linear Equations in chemistry

$$
x_{1} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+x_{2} \mathrm{O}_{2}=x_{3} \mathrm{CO}_{2}+x_{4} \mathrm{H}_{2} \mathrm{O}
$$

Molecules give rise to vectors!
We write: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightsquigarrow\left[\begin{array}{l}2 \\ 6 \\ 1\end{array}\right], \mathrm{O}_{2} \rightsquigarrow\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right], \mathrm{CO}_{2} \rightsquigarrow\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathrm{H}_{2} \mathrm{O} \rightsquigarrow\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$
Thus the equation becomes

$$
x_{1}\left[\begin{array}{l}
2 \\
6 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]
$$

Linear Equations in chemistry

We solve the system with Gaussian elimination

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
2 & 0 & -1 & 0 & 0 \\
6 & 0 & 0 & -2 & 0 \\
1 & 2 & -2 & -1 & 0
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & -2 & 0 \\
0 & 2 & -\frac{3}{2} & -1 & 0
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -\frac{2}{3} & 0
\end{array}\right]
\end{aligned}
$$

Parametric vector form of the solution is thus

$$
x_{4}\left(\frac{1}{3}, 1, \frac{2}{3}, 1\right)
$$

Note that we should have $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{N}$. Choose the smallest x_{4} such that this is the case, i.e. $x_{4}=3$ then

$$
1 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

is balanced.

Linear systems vs. vector equations vs. matrices

$$
\begin{array}{r}
x_{1}+5 x_{2}+3 x_{3}+2 x_{4}=4 \\
x_{1}-2 x_{3}+2 x_{4}=0 \\
2 x_{2}+4 x_{3}+2 x_{4}=1
\end{array}
$$

can be rewritten as a vector equation

$$
x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

Solutions to the linear system \leftrightarrow solutions to the vector equation.
Also the linear system is represented by the augmented matrix

$$
\left[\begin{array}{ccccc}
1 & 5 & 3 & 2 & 4 \\
1 & 0 & -2 & 2 & 0 \\
0 & 2 & 4 & 2 & 1
\end{array}\right]
$$

Linear systems vs. vector equations vs. matrices II

The augmented matrix is used to solve the linear system but the matrix representation is a representation and not an equation.

Question: Can we rewrite the linear system as a matrix equation? Idea: Compare the coefficients matrix of the linear system

$$
A=\left[\begin{array}{cccc}
1 & 5 & 3 & 2 \\
1 & 0 & -2 & 2 \\
0 & 2 & 4 & 2
\end{array}\right]=\left[\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]\right]
$$

with the vector equation

$$
x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

Linear systems vs. vector equations vs. matrices III

Then we define for $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ the equation $A \vec{x}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$ to mean the same as the vector equation

$$
x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{2} \cdot\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]+x_{3} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right]+x_{4} \cdot\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

In fact we can use this principle to define a product $A \vec{x}$ for any suitable vector \vec{x} !

