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In today’s lecture we will
learn more about vector space bases
... and how they induce coordinate systems
see an example of how this makes abstract vector spaces
useful
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Basis of a vector space

Let V be a vector space. A subset B = {⇀b 1, . . . ,
⇀b n } is called

basis of V if
span {⇀b 1, . . . ,

⇀b n } = V
the set B is linearly independent

We can think of a basis as a “minimal” system generating V .

Example
The standard basis for Rn, are the unit vectors ⇀e 1, . . . ⇀e n ∈ Rn

Polynomial basis P = {1, t, t2, . . . , tn} for Pn.
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H = span{⇀v 1, ⇀v 2, . . . , ⇀v n} subspace of a vector space V .

Strategies to construct a basis for H
Remove (step-by-step) vectors from {⇀v 1, ⇀v 2, . . . , ⇀v n} which
are linear combinations of the other vectors.
 Build a linear independent generating set.
(For V = Rn use Gaussian elimination!)
Start with ⇀0 6= ⇀v ∈ {⇀v 1, ⇀v 2, . . . , ⇀v n} and add vectors
from {⇀v 1, ⇀v 2, . . . , ⇀v n}, make sure in every step that the
span gets larger!
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Definition
Let V , W be vector spaces. A function T : V →W is called a
linear transformation if for all ⇀v , ⇀w ∈ V and r ∈ K we have

T (⇀u + r ⇀v ) = T (⇀u ) + rT (⇀v )

Define

kernel of T : ker T = {⇀v ∈ V |T (⇀v ) = 0 }
image of T : im T = {⇀w ∈W |∃⇀x ∈ V with T (⇀x ) = ⇀w }

Examples
A a m × n matrix, TA : Rn → Rn, ⇀x 7→ A⇀x is linear,
ker TA = Nul(A) and im TA = Col (A).
ev0 : C∞(R,R)→ R, f 7→ f (0) is linear,
ker ev0 = {f ∈ C∞(R,R), f (0) = 0} and im ev0 = R.
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Coordinate systems from bases
Let B = {⇀b 1, . . . ,

⇀b n} be a basis of a vector space V then each
⇀x ∈ V can be written as a unique linear combination

⇀x =
n∑

i=1
ci

⇀b i

Obtain an invertible (!) linear transformation

KB : V → Rn, ⇀x =
n∑

i=1
ci

⇀b i 7→ (c1, c2, . . . , cn)

Coordinates for Pn (Polynomials up to degree n)
Recall the Polynomial basis P = {1, t, t2, . . . , tn} for Pn.
Then

KP : Pn → Rn+1,
n∑

i=0
ai t i 7→ [a0 a1 . . . an]

T .
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Translating problems to Rn

Finding an unknown polynomial
In an experiment we observe the following values of an unknown
function f :

time t 0 1 2 3
f (t) .4 1.2 −.2 0

Can we approximate f with something simple, i.e. is there a
polynomial of (at most) degree 3 which takes these values?

Idea: Use linear functions and “translate the problem” from P3 to
a problem written in linear functions between Rn and Rm!
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Translating problems to Rn

Our aim is now to rewrite
time t 0 1 2 3
f (t) .4 1.2 −.2 0

Idea: Use the linear functions

evk : P3 → R, p(t) 7→ p(k), k = 0, 1, 2, 3.

then:

ev0(f ) = .4, ev1(f ) = 1.2, ev2(f ) = −.2 and ev3(f ) = 0. (1)

Let us get rid of P3 in (1). Idea: The coordinate function
KP : P3 → R4 of the polynomial basis is invertible, with inverse

S : R4 → P3,
[
a0 a1 a2 a3

]
7→

3∑
i=0

ai t i
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Translating problems to Rn

To find the polynomial we search, we can thus:
Find ⇀x ∈ R4 such that ⇀x satisfies the system of equations

ev0 ◦ S(⇀x ) = .4 ev1 ◦ S(⇀x ) = 1.2
ev2 ◦ S(⇀x ) = −.2 ev3 ◦ S(⇀x ) = 0

Then use S to “translate” ⇀x ∈ R4 to a polynomial.

As evk and S are linear transformations, the functions

evk ◦ S : R4 → R,
[
a0 a1 a2 a3

]T
7→

3∑
i=0

aik i

are linear, whence matrix transformations! (Can compute standard
matrices)
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Translating problems to Rn

Computing standard matrices for the functions evk ◦ S we have:

Aev0◦S =
[
1 0 0 0

]
Aev1◦S =

[
1 1 1 1

]
Aev2◦S =

[
1 2 4 8

]
Aev3◦S =

[
1 3 9 27

]

Thus we can find the polynomial as follows:
Solve the matrix equation

1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

 ·⇀x =


.4

1.2
−.2

0

 (2)

Then S(⇀x ) = K−1
P (⇀x ) is the polynomial we seek!
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Solving the matrix equation (2) we obtain ⇀x =


.4
19
6
−3
19
30


Hence f (t) = S(⇀x ) = .4 + 19

6 t − 3t2 + 19
30 t3 is a polynomial which

satisfies

time t 0 1 2 3
f (t) .4 1.2 −.2 0
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