TMA 4115 Matematikk 3 Lecture 19 for MTFYMA

Alexander Schmeding

NTNU

14. March 2016

In today's lecture we will

- learn more about vector space bases
- ... and how they induce coordinate systems
- see an example of how this makes abstract vector spaces useful

Basis of a vector space

Let V be a vector space. A subset $\mathcal{B} = \{\overrightarrow{b}_1, \dots, \overrightarrow{b}_n\}$ is called **basis** of V if

- span $\{\overrightarrow{b}_1,\ldots,\overrightarrow{b}_n\} = V$
- the set ${\mathcal B}$ is linearly independent

We can think of a basis as a "minimal" system generating V.

Example

The **standard basis** for \mathbb{R}^n , are the unit vectors $\overrightarrow{e}_1, \ldots \overrightarrow{e}_n \in \mathbb{R}^n$

Polynomial basis $\mathcal{P} = \{1, t, t^2, \dots, t^n\}$ for \mathbb{P}_n .

 $H = \operatorname{span}\{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n\}$ subspace of a vector space V.

Strategies to construct a basis for H

Remove (step-by-step) vectors from { → 1, → 2,..., → n} which are linear combinations of the other vectors.
→ Build a linear independent generating set.
(For V = ℝⁿ use Gaussian elimination!)

• Start with $\overrightarrow{0} \neq \overrightarrow{v} \in \{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n\}$ and add vectors from $\{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n\}$, make sure in every step that the span gets larger!

Definition

Let V, W be vector spaces. A function $T: V \to W$ is called a **linear transformation** if for all $\overrightarrow{v}, \overrightarrow{w} \in V$ and $r \in \mathbb{K}$ we have

$$T(\overrightarrow{u} + r\overrightarrow{v}) = T(\overrightarrow{u}) + rT(\overrightarrow{v})$$

Define

kernel of
$$T$$
: ker $T = \{ \overrightarrow{v} \in V | T(\overrightarrow{v}) = 0 \}$
image of T : im $T = \{ \overrightarrow{w} \in W | \exists \overrightarrow{x} \in V \text{ with } T(\overrightarrow{x}) = \overrightarrow{w} \}$

Examples

• A a $m \times n$ matrix, $T_A : \mathbb{R}^n \to \mathbb{R}^n, \overrightarrow{x} \mapsto A \overrightarrow{x}$ is linear, ker $T_A = \text{Nul}(A)$ and im $T_A = \text{Col}(A)$.

•
$$ev_0: C^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, f \mapsto f(0)$$
 is linear,
ker $ev_0 = \{f \in C^{\infty}(\mathbb{R}, \mathbb{R}), f(0) = 0\}$ and im $ev_0 = \mathbb{R}$

Coordinate systems from bases

Let $\mathcal{B} = \{\overrightarrow{b}_1, \dots, \overrightarrow{b}_n\}$ be a basis of a vector space V then each $\overrightarrow{x} \in V$ can be written as a unique linear combination

$$\overrightarrow{x} = \sum_{i=1}^{n} c_i \overrightarrow{b}_i$$

Obtain an invertible (!) linear transformation

$$\mathcal{K}_{\mathcal{B}}\colon V\to\mathbb{R}^n, \overrightarrow{x}=\sum_{i=1}^n c_i\overrightarrow{b}_i\mapsto (c_1,c_2,\ldots,c_n)$$

Coordinates for \mathbb{P}_n (Polynomials up to degree n)

Recall the Polynomial basis $\mathcal{P} = \{1, t, t^2, \dots, t^n\}$ for \mathbb{P}_n . Then

$$\mathcal{K}_{\mathcal{P}} \colon \mathbb{P}_n \to \mathbb{R}^{n+1}, \sum_{i=0}^n a_i t^i \mapsto [a_0 \ a_1 \ \dots \ a_n]^T.$$

Translating problems to \mathbb{R}^n

Finding an unknown polynomial

In an experiment we observe the following values of an unknown function f:

time t	0	1	2	3
f(t)	.4	1.2	2	0

Can we approximate f with something simple, i.e. is there a polynomial of (at most) degree 3 which takes these values?

Idea: Use linear functions and "translate the problem" from \mathbb{P}_3 to a problem written in linear functions between \mathbb{R}^n and \mathbb{R}^m !

Translating problems to \mathbb{R}^n

Our aim is now to rewrite

Idea: Use the linear functions

$$\operatorname{ev}_k \colon \mathbb{P}_3 \to \mathbb{R}, \quad p(t) \mapsto p(k), \quad k = 0, 1, 2, 3.$$

then:

$$ev_0(f) = .4, ev_1(f) = 1.2, ev_2(f) = -.2$$
 and $ev_3(f) = 0.$ (1)

Let us get rid of \mathbb{P}_3 in (1). **Idea**: The coordinate function $\mathcal{K}_{\mathcal{P}} \colon \mathbb{P}_3 \to \mathbb{R}^4$ of the polynomial basis is invertible, with inverse

$$S \colon \mathbb{R}^4 \to \mathbb{P}_3, \quad \begin{bmatrix} a_0 & a_1 & a_2 & a_3 \end{bmatrix} \mapsto \sum_{i=0}^3 a_i t^i$$

Translating problems to \mathbb{R}^n

To find the polynomial we search, we can thus:

Find $\overrightarrow{x} \in \mathbb{R}^4$ such that \overrightarrow{x} satisfies the system of equations

$$\operatorname{ev}_0 \circ S(\overrightarrow{x}) = .4$$
 $\operatorname{ev}_1 \circ S(\overrightarrow{x}) = 1.2$
 $\operatorname{ev}_2 \circ S(\overrightarrow{x}) = -.2$ $\operatorname{ev}_3 \circ S(\overrightarrow{x}) = 0$

Then use S to "translate" $\overrightarrow{x} \in \mathbb{R}^4$ to a polynomial.

As ev_k and S are linear transformations, the functions

$$\operatorname{ev}_k \circ S \colon \mathbb{R}^4 \to \mathbb{R}, \quad \begin{bmatrix} a_0 & a_1 & a_2 & a_3 \end{bmatrix}^T \mapsto \sum_{i=0}^3 a_i k^i$$

are linear, whence matrix transformations! (Can compute standard matrices)

(2)

Translating problems to \mathbb{R}^n

Computing standard matrices for the functions $ev_k \circ S$ we have:

$$\begin{aligned} A_{\text{ev}_0 \circ S} &= \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} & A_{\text{ev}_1 \circ S} &= \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \\ A_{\text{ev}_2 \circ S} &= \begin{bmatrix} 1 & 2 & 4 & 8 \end{bmatrix} & A_{\text{ev}_3 \circ S} &= \begin{bmatrix} 1 & 3 & 9 & 27 \end{bmatrix} \end{aligned}$$

Thus we can find the polynomial as follows:

Solve the matrix equation

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{bmatrix} \cdot \overrightarrow{x} = \begin{bmatrix} .4 \\ 1.2 \\ -.2 \\ 0 \end{bmatrix}$$

Then $S(\overrightarrow{x}) = K_{\mathcal{P}}^{-1}(\overrightarrow{x})$ is the polynomial we seek!

Solving the matrix equation (2) we obtain
$$\vec{x} = \begin{bmatrix} .4\\ \frac{19}{6}\\ -3\\ \frac{19}{30} \end{bmatrix}$$

Hence $f(t) = S(\overrightarrow{x}) = .4 + \frac{19}{6}t - 3t^2 + \frac{19}{30}t^3$ is a polynomial which satisfies