TMA 4115 Matematikk 3
 Lecture 19 for MTFYMA

Alexander Schmeding

NTNU

$$
\text { 14. March } 2016
$$

In today's lecture we will

- learn more about vector space bases
- ... and how they induce coordinate systems
- see an example of how this makes abstract vector spaces useful

Basis of a vector space

Let V be a vector space. A subset $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ is called basis of V if

- span $\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}=V$
- the set \mathcal{B} is linearly independent

We can think of a basis as a "minimal" system generating V.

Example

The standard basis for \mathbb{R}^{n}, are the unit vectors $\vec{e}_{1}, \ldots \vec{e}_{n} \in \mathbb{R}^{n}$
Polynomial basis $\mathcal{P}=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ for \mathbb{P}_{n}.
$H=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ subspace of a vector space V.

Strategies to construct a basis for H

- Remove (step-by-step) vectors from $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ which are linear combinations of the other vectors.
\rightsquigarrow Build a linear independent generating set.
(For $V=\mathbb{R}^{n}$ use Gaussian elimination!)
- Start with $\overrightarrow{0} \neq \vec{v} \in\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ and add vectors from $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$, make sure in every step that the span gets larger!

Definition

Let V, W be vector spaces. A function $T: V \rightarrow W$ is called a linear transformation if for all $\vec{v}, \vec{w} \in V$ and $r \in \mathbb{K}$ we have

$$
T(\stackrel{\rightharpoonup}{u}+r \vec{v})=T(\stackrel{\rightharpoonup}{u})+r T(\stackrel{\rightharpoonup}{v})
$$

Define
kernel of $T: \operatorname{ker} T=\{\vec{v} \in V \mid T(\vec{v})=0\}$ image of $T: \operatorname{im} T=\{\vec{w} \in W \mid \exists \vec{x} \in V$ with $T(\vec{x})=\vec{w}\}$

Examples

- A a $m \times n$ matrix, $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \vec{x} \mapsto A \vec{x}$ is linear, ker $T_{A}=\operatorname{Nul}(A)$ and $\operatorname{im} T_{A}=\operatorname{Col}(A)$.
- $\mathrm{ev}_{0}: C^{\infty}(\mathbb{R}, \mathbb{R}) \rightarrow \mathbb{R}, f \mapsto f(0)$ is linear, ker $\mathrm{ev}_{0}=\left\{f \in C^{\infty}(\mathbb{R}, \mathbb{R}), f(0)=0\right\}$ and $\mathrm{im} \mathrm{ev}_{0}=\mathbb{R}$.

Coordinate systems from bases

Let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis of a vector space V then each $\vec{x} \in V$ can be written as a unique linear combination

$$
\vec{x}=\sum_{i=1}^{n} c_{i} \vec{b}_{i}
$$

Obtain an invertible (!) linear transformation

$$
K_{\mathcal{B}}: V \rightarrow \mathbb{R}^{n}, \vec{x}=\sum_{i=1}^{n} c_{i} \vec{b}_{i} \mapsto\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Coordinates for \mathbb{P}_{n} (Polynomials up to degree n)
Recall the Polynomial basis $\mathcal{P}=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ for \mathbb{P}_{n}. Then

$$
K_{\mathcal{P}}: \mathbb{P}_{n} \rightarrow \mathbb{R}^{n+1}, \sum_{i=0}^{n} a_{i} t^{i} \mapsto\left[\begin{array}{llll}
a_{0} & a_{1} & \ldots & a_{n}
\end{array}\right]^{T} .
$$

Translating problems to \mathbb{R}^{n}

Finding an unknown polynomial

In an experiment we observe the following values of an unknown function f :

time t	0	1	2	3
$f(t)$.4	1.2	-.2	0

Can we approximate f with something simple, i.e. is there a polynomial of (at most) degree 3 which takes these values?

Idea: Use linear functions and "translate the problem" from \mathbb{P}_{3} to a problem written in linear functions between \mathbb{R}^{n} and \mathbb{R}^{m} !

Translating problems to \mathbb{R}^{n}

Our aim is now to rewrite

time t	0	1	2	3
$f(t)$.4	1.2	-.2	0

Idea: Use the linear functions

$$
\mathrm{ev}_{k}: \mathbb{P}_{3} \rightarrow \mathbb{R}, \quad p(t) \mapsto p(k), \quad k=0,1,2,3 .
$$

then:

$$
\begin{equation*}
\mathrm{ev}_{0}(f)=.4, \mathrm{ev}_{1}(f)=1.2, \mathrm{ev}_{2}(f)=-.2 \text { and } \mathrm{ev}_{3}(f)=0 \tag{1}
\end{equation*}
$$

Let us get rid of \mathbb{P}_{3} in (1). Idea: The coordinate function $K_{\mathcal{P}}: \mathbb{P}_{3} \rightarrow \mathbb{R}^{4}$ of the polynomial basis is invertible, with inverse

$$
S: \mathbb{R}^{4} \rightarrow \mathbb{P}_{3}, \quad\left[\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3}
\end{array}\right] \mapsto \sum_{i=0}^{3} a_{i} t^{i}
$$

Translating problems to \mathbb{R}^{n}

To find the polynomial we search, we can thus:

Find $\vec{x} \in \mathbb{R}^{4}$ such that \vec{x} satisfies the system of equations

$$
\begin{array}{rr}
\mathrm{ev}_{0} \circ S(\vec{x})=.4 & \mathrm{ev}_{1} \circ S(\vec{x})=1.2 \\
\mathrm{ev}_{2} \circ S(\vec{x})=-.2 & \mathrm{ev}_{3} \circ S(\vec{x})=0
\end{array}
$$

Then use S to "translate" $\vec{x} \in \mathbb{R}^{4}$ to a polynomial.
As ev_{k} and S are linear transformations, the functions

$$
\mathrm{ev}_{k} \circ S: \mathbb{R}^{4} \rightarrow \mathbb{R}, \quad\left[\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3}
\end{array}\right]^{T} \mapsto \sum_{i=0}^{3} a_{i} k^{i}
$$

are linear, whence matrix transformations! (Can compute standard matrices)

Translating problems to \mathbb{R}^{n}

Computing standard matrices for the functions $\mathrm{ev}_{k} \circ S$ we have:

$$
\begin{array}{lll}
A_{\mathrm{ev}_{0} \circ S}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] & A_{\mathrm{ev}_{1} \circ S}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \\
A_{\mathrm{ev}_{2} \circ S}=\left[\begin{array}{llll}
1 & 2 & 4 & 8
\end{array}\right] & A_{\mathrm{ev}_{3} \circ S}=\left[\begin{array}{llll}
1 & 3 & 9 & 27
\end{array}\right]
\end{array}
$$

Thus we can find the polynomial as follows:
Solve the matrix equation

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2}\\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{array}\right] \cdot \vec{x}=\left[\begin{array}{c}
.4 \\
1.2 \\
-.2 \\
0
\end{array}\right]
$$

Then $S(\vec{x})=K_{\mathcal{P}}^{-1}(\vec{x})$ is the polynomial we seek!

Solving the matrix equation (2) we obtain $\vec{x}=\left[\begin{array}{c}.4 \\ \frac{19}{6} \\ -3 \\ \frac{19}{30}\end{array}\right]$
Hence $f(t)=S(\vec{x})=.4+\frac{19}{6} t-3 t^{2}+\frac{19}{30} t^{3}$ is a polynomial which satisfies

time t	0	1	2	3
$f(t)$.4	1.2	-.2	0

