TMA 4115 Matematikk 3 MBIOT5, MTKJ, MTNANO

Alexander Schmeding

NTNU

19. February 2016

In this lecture we discuss

- Linear systems arising from linear networks
- Linear (in-)dependence of vectors...
- ... what this means for solutions of linear systems

Example: Traffic flow in a roundabout

We count cars in a roundabout ${ }^{1}$.

Question: How can we model the traffic in the roundabout?
${ }^{1}$ Note that in a roundabout cars are only allowed to travel in one direction.

The linear system gives rise to the augmented matrix

$$
\left[\begin{array}{cccccc}
1 & 0 & -1 & 0 & 0 & 100 \\
-1 & 1 & 0 & 1 & 0 & 200 \\
0 & 1 & -1 & 0 & 1 & 200
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccccc}
1 & 0 & -1 & 0 & 0 & 100 \\
0 & 1 & -1 & 0 & 1 & 200 \\
0 & 0 & 0 & 1 & -1 & 100
\end{array}\right]
$$

Thus the parametric vector form of the general solution is

$$
\left[\begin{array}{c}
100 \\
200 \\
0 \\
100 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
1
\end{array}\right]
$$

Solutions of matrix equations

We were interested in the following questions about $A \vec{x}=\vec{b}$ 1. Is there a solution at all (i.e. is the system consistent)?
2. Is there a unique solution?

For $A=\left[\begin{array}{llll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \ldots & \overrightarrow{a_{n}}\end{array}\right]$ question 1 can be rephrased as:

- Is $\vec{b} \in \operatorname{span}\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}\right\}$?

What about the second question?
Idea: The general solution of $A \vec{x}=\vec{b}$ will produce a unique solution if $A \vec{x}=\overrightarrow{0}$ has a unique solution.

The trivial solution $\overrightarrow{0}$ always exists. Hence, $A \vec{x}=\overrightarrow{0}$ has a unique solution if and only if $\overrightarrow{0}$ is the only solution.

Linear Independence

A family of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are called

- linearly independent if

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i} \vec{v}_{i}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

only admits the trivial solution $r_{1}=r_{2}=\ldots=r_{n}=0$.

- If (1) admits a non trivial solution (at least one $r_{i} \neq 0$) then the vectors are linearly dependent (call (1) linear dependency relation).

Test for linear independence

Use Gaussian elimination on the matrix $\left[\vec{v}_{1} \vec{v}_{2} \ldots \vec{v}_{k}\right.$]. The vectors are linearly independent if and only if every column is a pivot column.

Summary: span and linear (in-)dependence

Let $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}$ be vectors and $A=\left[\begin{array}{llll}\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \ldots & \overrightarrow{v_{p}}\end{array}\right]$.

- $\operatorname{span}\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}\right\}$ is the set of all vectors which can be generated from $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}$.

Test for $\vec{b} \in \operatorname{span}\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}\right\}$
If $A \vec{x}=\vec{b}$ is consistent, \vec{b} is in the span.

- Linear (in-)dependence is about redundancy, i.e. whether we can combine vectors from fewer vectors.

Test for linear (in-)dependence of $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{p}}\right\}$

If $[A \overrightarrow{0}]$ contains only basic variables, the family is linearly independent. Otherwise, the family is linearly dependent.

Moral: Use Gaussian elimination to settle these questions!

