TMA 4115 Matematikk 3
 Lecture 2 for MTFYMA

Alexander Schmeding

NTNU
13. January 2016

Complex numbers

A complex number is an expression

$$
a+i b \quad \text { (may also write } \quad a+b i)
$$

where a, b are real numbers and i the imaginary unit $\left(i^{2}=-1\right)$
Representations of a complex number w :
$a+i b$ normal form (or standard form), $\operatorname{Re}(w)=a$ and $\operatorname{Im}(w)=b$
(a, b) cartesian coordinates for the complex plane
(r, θ) polar coordinates for the complex plane and $w \neq 0$.

How do we obtain r and θ for $w=a+i b$?

r : distance from 0 to w
θ : angle between real axis and ray from 0 through w

$r=|w|$ and $\theta \in \arg (w)=\{\ldots, \theta-2 \pi, \theta, \theta+2 \pi, \theta+4 \pi, \ldots\}$
Recall if $-\pi<\theta \leq \pi$ then $\theta=\operatorname{Arg}(w)$ "principal argument".

How to compute (r, θ) from $w=a+i b$?

We know

$$
\begin{gathered}
r=|w|=\sqrt{a^{2}+b^{2}} \\
\tan (\theta)=\tan (\arg (a+b i))=\frac{b}{a} \quad(\text { if } a \neq 0)
\end{gathered}
$$

Warning: Your calculator can compute $\tan ^{-1}\left(\frac{b}{a}\right)$ but:

$$
\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}\left(\frac{-b}{-a}\right)
$$

Problem: Same number, but the angle should be different!

Solution:

Use the two variable arctan function (called atan2) or use $\tan ^{-1}$ and the formula for atan2 on Wikipedia http://en.wikipedia.org/wiki/Atan2

Recovering coordinates from (r, θ).

Use Pythagoras Theorem and basic geometry:

Multiplying complex numbers graphically.

Given complex numbers $w=(r, \theta)$ and $z=(s, \psi)$ what is $w \cdot z$?

