TMA 4115 Matematikk 3 Lecture 2 for MTFYMA

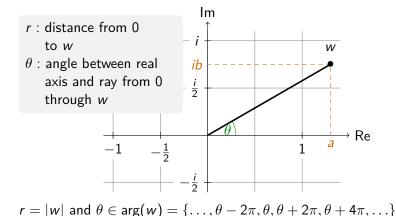
Alexander Schmeding

NTNU

13. January 2016

Complex numbers

A complex number is an expression


$$a + ib$$
 (may also write $a + bi$)

where a, b are real numbers and i the imaginary unit $(i^2 = -1)$

Representations of a complex number w:

- a+ib normal form (or standard form), Re(w)=a and Im(w)=b
- (a, b) cartesian coordinates for the complex plane
- (r,θ) polar coordinates for the complex plane and $w \neq 0$.

How do we obtain r and θ for w = a + ib?

Recall if $-\pi < \theta \le \pi$ then $\theta = \text{Arg}(w)$ "principal argument".

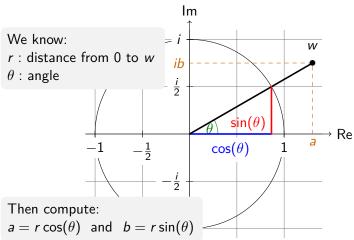
How to compute (r, θ) from w = a + ib?

We know

$$r=|w|=\sqrt{a^2+b^2}$$
 $an(heta)= an(rg(a+bi))=rac{b}{a}$ (if $a
eq 0$)

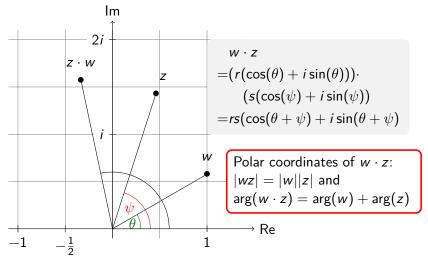
Warning: Your calculator can compute $tan^{-1}(\frac{b}{a})$ but:

$$\tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{-b}{-a}\right)$$


Problem: Same number, but the angle should be different!

Solution:

Use the two variable arctan function (called atan2) or use tan⁻¹ and the formula for atan2 on Wikipedia http://en.wikipedia.org/wiki/Atan2


Recovering coordinates from (r, θ) .

Use Pythagoras Theorem and basic geometry:

Multiplying complex numbers graphically.

Given complex numbers $w = (r, \theta)$ and $z = (s, \psi)$ what is $w \cdot z$?

