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Coordinate systems from bases
Let B = {⇀b 1, . . . ,

⇀b n} be a basis of a vector space V then each
⇀x ∈ V can be written as a unique linear combination

⇀x =
n∑

i=1
ci

⇀b i

Obtain an invertible (!) linear transformation

KB : V → Rn, ⇀x =
n∑

i=1
ci

⇀b i 7→ (c1, c2, . . . , cn)

Coordinates for P3 (Polynomials up to degree 3)
Polynomial basis P = {1, t, t2, t3}.
Then

KP : P3 → R4,
3∑

i=0
ai t i 7→ [a0 a1 a2 a3]

T .
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Translating problems to Rn

Finding an unknown polynomial
In an experiment we observe the following values of an unknown
function f :

time t 0 1 2 3
f (t) .4 1.2 −.2 0

Can we approximate f with something simple, i.e. is there a
polynomial of (at most) degree 3 which takes these values?

Idea: Rewrite the table using the linear functions

evk : P3 → R, p(t) 7→ p(k), k = 0, 1, 2, 3.

ev0(f ) = .4, ev1(f ) = 1.2, ev2(f ) = −.2 and ev3(f ) = 0. (1)



Coordinate relative to a basis Markov Chains

To get rid of P3 in (1) use

S = K−1
P : R4 → P3,

[
a0 a1 a2 a3

]T
7→

3∑
i=0

ai t i

and note that the functions

evk ◦ S : R4 → R,
[
a0 a1 a2 a3

]T
7→

3∑
i=0

aik i

are linear, whence matrix transformations! (Can compute standard
matrices)
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Translating problems to Rn

Computing standard matrices for the functions evk ◦ S we have:

Aev0◦S =
[
1 0 0 0

]
Aev1◦S =

[
1 1 1 1

]
Aev2◦S =

[
1 2 4 8

]
Aev3◦S =

[
1 3 9 27

]

Thus we can find the polynomial as follows:
Solve the matrix equation

1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

 ·⇀x =


.4

1.2
−.2

0

 (2)

Then S(⇀x ) = K−1
P (⇀x ) is the polynomial we seek!
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Solving the matrix equation (2) we obtain ⇀x =


.4
19
6
−3
19
30


Hence f (t) = S(⇀x ) = .4 + 19

6 t − 3t2 + 19
30 t3 is a polynomial which

satisfies

time t 0 1 2 3
f (t) .4 1.2 −.2 0



Coordinate relative to a basis Markov Chains

Two problems from the exams

Autumn 2008 5b:
Assume that each year 30% of owners of cars with two-wheel drive
change to a car with four-wheel drive, whilst 10% of owners of cars
with four-wheel drive change to a car with two-wheel drive. The
total number of cars is constant, and each car owner has only one
car. Given that 25% of car owners have four-wheel drive now,
what percentage of car ownwers will have four-wheel drive in ten
years’ time?
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Two problems from the exams II

Spring 2011 6b:
There are two places in Trondheim with bicycles that can be hired
for free: Gløshaugen (G) and Torget (T). The bicycles can be hired
from early in the morning and must be returned to one of the
places the same evening. It is found that of the bicycles hired from
G, 80% are returned to G and 20% to T. Of the bicycles hired
from T, 30% are returned to G and 70% to T. We assume that
this pattern is constant, that all bicycles are hired out each
morning, and that no bicycles are stolen. In the long term, what
proportion of the bicycles will be at Gløshaugen each morning?
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Similarities

The population is divided into a finite set of mutually
exclusive states.
The system evolves in discrete time intervals and in each
interval the individuals can change state.
An individual changes state according to a set list of
probabilities that depends only on the current state and is
independent of time.

This situation often occurs when we model (dynamical) systems in
the natural sciences!

We call such systems Markov chains.
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15.3 Spring 2011 6 b
Example for a Markov chain

P =

[
.8 .3
.2 .7

]
,

⇀x i+1 = P⇀xi , i = 1, 2, 3, . . .
Two initial states ⇀x 0: ⇀e 1, ⇀e 2

0 1

1

i 1 2 3 4 5 6 7
⇀e 1

[
.8
.2

] [
.7
.3

] [
.65
.35

] [
.625
.375

] [
.6125
.3875

] [
.6062
.3938

] [
.6031
.3969

]
⇀e 2

[
.3
.7

] [
.45
.55

] [
.525
.475

] [
.5625
.4375

] [
.5812
.4188

] [
.5906
.4094

] [
.5953
.4047

]

Apparently for both initial values the system runs towards
[
.6
.4

]
.
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16.1 Definition of Markov chains

Define
A vector ⇀v =

[
v1 v2 . . . vn

]T
∈ Rn is called probability

vector if vi > 0 for 1 ≤ i ≤ n and
∑n

i=1 vi = 1.
A square matrix A =

[
⇀v 1

⇀v 2 . . . ⇀v 1
]

with ⇀v i
probability vector for 1 ≤ i ≤ n is called stochastic matrix.

Markov chain
A Markov chain is a sequence of probability vectors ⇀x 1, ⇀x 2, . . .
with a stochastic matrix P such that

⇀x i+1 = P⇀x i ∀i

We also call ⇀x i state vector.
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Questions connected to Markov chains

What happens in the next (/after finitely many) steps?
What is the long term behaviour of the system?
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The long term behaviour of Markov chains

A stochastic matrix P is called regular if there is some k ∈ N such
that Pk has only strictly positive entries.

Examples

P =

.5 .25 .25
0 .25 .25
.5 .5 .5

 is regular since P2 =

.375 .3125 .3125
.125 .1875 .1875
.5 .5 .5


Q =

[
1 0
0 1

]
is not regular
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The long term behaviour of Markov chains II

16.5 Theorem
If P is a regular n × n stochastic matrix, then P has a unique
steady-state vector ⇀q .
For any intial state ⇀x 0 the Markov chain {xk}k∈N0 with
⇀x k+1 = P⇀x k converges to ⇀q as k →∞.

To find a steady-state vector:
Check if the stochastic matrix P is regular
Compute as in 16.4.
Do not try to compute Pk ⇀x 0 for k →∞
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