TMA 4115 Matematikk 3 Lecture 21 for MTFYMA

Alexander Schmeding

NTNU

30. March 2016

16.1 Definition of Markov chains

Define

- A vector $\overrightarrow{v} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}^T \in \mathbb{R}^n$ is called *probability* vector if $v_i > 0$ for $1 \le i \le n$ and $\sum_{i=1}^n v_i = 1$.
- A square matrix $A = \begin{bmatrix} \overrightarrow{v}_1 & \overrightarrow{v}_2 & \dots & \overrightarrow{v}_1 \end{bmatrix}$ with \overrightarrow{v}_i probability vector for $1 \le i \le n$ is called *stochastic matrix*.

Markov chain

A *Markov chain* is a sequence of probability vectors $\overrightarrow{x}_1, \overrightarrow{x}_2, \ldots$ with a stochastic matrix P such that

$$\overrightarrow{x}_{i+1} = P\overrightarrow{x}_i \qquad \forall i$$

We also call \overrightarrow{x}_i state vector.

Questions connected to Markov chains

- What happens in the next (/after finitely many) steps?
- What is the long term behaviour of the system?

In an example for two initial states the system converged towards a vector (in this context called **steady state vector**).

In the long term the Markov chain converges towards the steady state vector $\begin{bmatrix} .6\\ .4 \end{bmatrix}$.

The long term behaviour of Markov chains

A stochastic matrix P is called **regular** if there is some $k \in \mathbb{N}$ such that P^k has only strictly positive entries.

Examples								
<i>P</i> =	「.5 0 .5	.25 .25 .5	.25 .25 .5	is regular since $P^2 =$.375 .125 .5	.3125 .1875 .5	.3125 .1875 .5	
$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is not regular								

The long term behaviour of Markov chains II

16.5 Theorem

If P is a regular $n \times n$ stochastic matrix, then P has a unique steady-state vector \overrightarrow{q} . For any initial state \overrightarrow{x}_0 the Markov chain $\{x_k\}_{k \in \mathbb{N}_0}$ with $\overrightarrow{x}_{k+1} = P \overrightarrow{x}_k$ converges to \overrightarrow{q} as $k \to \infty$.

To find a steady-state vector:

- Check if the stochastic matrix P is regular
- Compute as in 16.4.

Do **not** try to compute $P^k \overrightarrow{x}_0$ for $k \to \infty$

Special vectors attached to matrices

The steady-state vectors which determine the long term behaviour of a Markov chain satisfy

$$P\overrightarrow{x} = \overrightarrow{x}$$

Idea: Study matrices using these special kind of vectors.

Vectors which "reproduce" via the following formula

$$A\overrightarrow{x} = \lambda \overrightarrow{x}, \quad \lambda$$
 a scalar

will allow us to discover hidden structures in matrices.