TMA 4115 Matematikk 3
 Lecture 21 for MTFYMA

Alexander Schmeding

NTNU
30. March 2016

16.1 Definition of Markov chains

Define

- A vector $\vec{v}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T} \in \mathbb{R}^{n}$ is called probability vector if $v_{i}>0$ for $1 \leq i \leq n$ and $\sum_{i=1}^{n} v_{i}=1$.
- A square matrix $A=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{1}\end{array}\right]$ with \vec{v}_{i} probability vector for $1 \leq i \leq n$ is called stochastic matrix.

Markov chain

A Markov chain is a sequence of probability vectors $\vec{x}_{1}, \vec{x}_{2}, \ldots$ with a stochastic matrix P such that

$$
\vec{x}_{i+1}=P \vec{x}_{i} \quad \forall i
$$

We also call \vec{x}_{i} state vector.

Questions connected to Markov chains

- What happens in the next (/after finitely many) steps?
- What is the long term behaviour of the system?

In an example for two initial states the system converged towards a vector (in this context called steady state vector).

Spring 20116 b

Example for a Markov chain
$P=\left[\begin{array}{ll}.8 & .3 \\ .2 & .7\end{array}\right]$,
$\vec{x}_{i+1}=P \overrightarrow{x_{i}}, i=1,2,3, \ldots$
Two initial states $\vec{x}_{0}: \vec{e}_{1}, \vec{e}_{2}$

$\left.\begin{array}{c|c|c|c|c|c|c|c}i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \stackrel{\rightharpoonup}{e}_{1} & \left.\begin{array}{c}.8 \\ .2\end{array}\right] & {\left[\begin{array}{c}.7 \\ .3\end{array}\right]} & {\left[\begin{array}{l}.65 \\ .35\end{array}\right]} & {\left[\begin{array}{l}.625 \\ .375\end{array}\right]} & {\left[\begin{array}{l}.6125 \\ .3875\end{array}\right]} & {\left[\begin{array}{l}.6062 \\ .3938\end{array}\right]} & {\left[\begin{array}{l}.6031 \\ .3969\end{array}\right]} \\ \hline \vec{e}_{2} & .3 \\ \hline .7\end{array}\right]\left[\begin{array}{ll}.45 \\ .55\end{array}\right]\left[\begin{array}{ll}.525 \\ .475\end{array}\right]\left[\begin{array}{ll}.5625 \\ .4375\end{array}\right]\left[\begin{array}{l}.5812 \\ .4188\end{array}\right]\left[\begin{array}{l}.5906 \\ .4094\end{array}\right]\left[\begin{array}{l}.5953 \\ .4047\end{array}\right]$

In the long term the Markov chain converges towards the steady state vector $\left[\begin{array}{l}.6 \\ .4\end{array}\right]$.

The long term behaviour of Markov chains

A stochastic matrix P is called regular if there is some $k \in \mathbb{N}$ such that P^{k} has only strictly positive entries.

Examples

$P=\left[\begin{array}{ccc}.5 & .25 & .25 \\ 0 & .25 & .25 \\ .5 & .5 & .5\end{array}\right]$ is regular since $P^{2}=\left[\begin{array}{ccc}.375 & .3125 & .3125 \\ .125 & .1875 & .1875 \\ .5 & .5 & .5\end{array}\right]$
$Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is not regular

The long term behaviour of Markov chains II

16.5 Theorem

If P is a regular $n \times n$ stochastic matrix, then P has a unique steady-state vector \vec{q}.
For any intial state \vec{x}_{0} the Markov chain $\left\{x_{k}\right\}_{k \in \mathbb{N}_{0}}$ with $\vec{x}_{k+1}=P \vec{x}_{k}$ converges to \vec{q} as $k \rightarrow \infty$.

To find a steady-state vector:

- Check if the stochastic matrix P is regular
- Compute as in 16.4.

Do not try to compute $P^{k} \vec{x}_{0}$ for $k \rightarrow \infty$

Special vectors attached to matrices

The steady-state vectors which determine the long term behaviour of a Markov chain satisfy

$$
P \vec{x}=\vec{x}
$$

Idea: Study matrices using these special kind of vectors.
Vectors which "reproduce" via the following formula

$$
A \vec{x}=\lambda \vec{x}, \quad \lambda \text { a scalar }
$$

will allow us to discover hidden structures in matrices.

