TMA 4115 Matematikk 3
 Lecture 22 for MTFYMA

Alexander Schmeding

NTNU

03. April 2016

In today's lecture we will...

- discuss when two matrices are similar
- use similarity to relate matrices to diagonal matrices
- more on eigenvalues and eigenvectors

Eigenvector and eigenvalue

Definition of Eigenvectors and Eigenvalues

A a square matrix. \vec{x} is Eigenvector (of A) with eigenvalue λ if

$$
A \vec{x}=\lambda \vec{x} \quad \text { holds for } \lambda
$$

We note that...

- $\stackrel{\rightharpoonup}{v}$ and $\stackrel{\rightharpoonup}{w}$ eigenvectors for A (with eigenvalue λ), then $\vec{v}+r \vec{w}$ is eigenvector with eigenvalue λ
- A real matrix can have complex eigenvalues

We compute

- eigenvalues via the characteristic polynomial $\operatorname{det}(A-\lambda /)$.
- eigenvectors via $(A-\lambda I) \vec{x}=\overrightarrow{0}$ (after establishing that λ is eigenvalue!)

Example: Find eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
Calculate the roots of the characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda=(0-\lambda)(2-\lambda)
$$

Roots of the characteristic polynomial $=$ eigenvalues.
$\lambda=0$ and $\lambda=2$.
Now we also calculate eigenvectors. For $\lambda=0$ and $\lambda=2$ we use Gaussian elimination:
Find a non trivial solution of $(A-0 I) \vec{x}=\overrightarrow{0}$ and $(A-2 I) \vec{y}=\overrightarrow{0}$.
For example $\vec{x}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Along the eigenvectors the matrix acts by scalar multiplication:

Observe that the eigenvectors even form a basis \mathcal{B} for \mathbb{R}^{2} !

Observation: Matrix action in \mathcal{B} coordinates

Recall \mathcal{B}-coordinates $[\vec{x}]_{\mathcal{B}}$, have invertible linear map (\sim matrix) $P_{\mathcal{B}}$ with $P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}=\vec{x}$. Then

$$
\begin{aligned}
& \vec{x} \xrightarrow{A} A \vec{x} \\
& \left.\right|_{[\vec{x}]_{\mathcal{B}}} ^{P_{\mathcal{B}}^{-1} \cdot} \begin{array}{lll}
\\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right] .} & P_{\mathcal{B}} \cdot \\
& {[A \vec{x}]_{\mathcal{B}}}
\end{array}
\end{aligned}
$$

$\rightarrow A$ acts on the \mathcal{B}-coordinates as a diagonal matrix!
Note $A=P_{\mathcal{B}}\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right] P_{\mathcal{B}}^{-1}$

Question:

Can we "transform" (all?) square matrices to diagonal matrices?

A a $n \times n$-matrix. Find a similar diagonal matrix (if possible).

1. Compute the eigenvalues of A,
2. Compute the eigenvectors associated to the eigenvalues. (Gaussian elimination!)
3. Check if we have n linear independent eigenvectors. If not: A is not diagonalisable!
Hint: Eigenvectors of different eigenvalues are linearly independent.
4. Write eigenvectors as columns in a matrix P
5. Construct a diagonal matrix D whose diagonal entries are the eigenvalues corresponding to the columns in P
6. Then $A=P D P^{-1}$
