# TMA 4115 Matematikk 3 Lecture 22 for MTFYMA

## Alexander Schmeding

#### NTNU

### 03. April 2016

In today's lecture we will...

- discuss when two matrices are similar
- use similarity to relate matrices to diagonal matrices
- more on eigenvalues and eigenvectors

# Eigenvector and eigenvalue

### Definition of Eigenvectors and Eigenvalues

A a square matrix.  $\overrightarrow{x}$  is **Eigenvector** (of A) with **eigenvalue**  $\lambda$  if

 $A\overrightarrow{x} = \lambda \overrightarrow{x}$  holds for  $\lambda$ .

We note that...

- $\overrightarrow{v}$  and  $\overrightarrow{w}$  eigenvectors for A (with eigenvalue  $\lambda$ ), then  $\overrightarrow{v} + r \overrightarrow{w}$  is eigenvector with eigenvalue  $\lambda$
- A real matrix can have complex eigenvalues

We compute

- eigenvalues via the characteristic polynomial det $(A \lambda I)$ .
- eigenvectors via  $(A \lambda I)\vec{x} = \vec{0}$  (after establishing that  $\lambda$  is eigenvalue!)

Example: Find eigenvalues and eigenvectors of  $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 

Calculate the roots of the characteristic polynomial

$$\det(A - \lambda I) = (1 - \lambda)^2 - 1 = \lambda^2 - 2\lambda = (0 - \lambda)(2 - \lambda).$$

Roots of the characteristic polynomial = eigenvalues.  $\lambda = 0$  and  $\lambda = 2$ .

Now we also calculate eigenvectors. For  $\lambda=0$  and  $\lambda=2$  we use Gaussian elimination:

Find a non trivial solution of 
$$(A - 0I)\overrightarrow{x} = \overrightarrow{0}$$
 and  $(A - 2I)\overrightarrow{y} = \overrightarrow{0}$ .  
For example  $\overrightarrow{x} = \begin{bmatrix} -1\\1 \end{bmatrix}$  and  $\overrightarrow{y} = \begin{bmatrix} 1\\1 \end{bmatrix}$ 

Along the eigenvectors the matrix acts by scalar multiplication:



Observe that the eigenvectors even form a basis  $\mathcal{B}$  for  $\mathbb{R}^2$ !

## Observation: Matrix action in $\mathcal{B}$ coordinates

Recall  $\mathcal{B}$ -coordinates  $[\overrightarrow{x}]_{\mathcal{B}}$ , have invertible linear map ( $\sim$  matrix)  $P_{\mathcal{B}}$  with  $P_{\mathcal{B}}[\overrightarrow{x}]_{\mathcal{B}} = \overrightarrow{x}$ . Then



#### Question:

Can we "transform" (all?) square matrices to diagonal matrices?

### A a $n \times n$ -matrix. Find a similar diagonal matrix (if possible).

- 1. Compute the eigenvalues of A,
- Compute the eigenvectors associated to the eigenvalues. (Gaussian elimination!)
- Check if we have n linear independent eigenvectors. If not: A is not diagonalisable!
  Hint: Eigenvectors of different eigenvalues are linearly independent.
- 4. Write eigenvectors as columns in a matrix P
- 5. Construct a diagonal matrix D whose diagonal entries are the eigenvalues corresponding to the columns in P
- 6. Then  $A = PDP^{-1}$