TMA 4115 Matematikk 3
 Lecture 24 for MTFYMA

Alexander Schmeding

NTNU
11. April 2016

In today's lecture we will

- explore the geometry of \mathbb{R}^{n}.
- define the length of vectors
- investigate when vectors are orthogonal

Geometry of \mathbb{R}^{n} : Length of vectors

Length in 2d:

Length in 3d:

Pythagoras (2 times!):
length of $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is $\sqrt{a^{2}+b^{2}+c^{2}}$

Distance between two vectors

How can we measure the distance between points?

Distance between vectors

$\operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|$
Note: $\|\vec{u}-\vec{v}\|=\|\vec{v}-\vec{u}\|$.

What does orthogonal mean?

If vectors \vec{u} and \vec{v} in \mathbb{R}^{2} meet in a right angle, they are perpendicular (or orthogonal):

Pythagoras theorem
$\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}$ Comparing both sides, the equation
holds if and only if:

$$
\vec{u} \cdot \vec{v}=0
$$

Idea: Use this to define orthogonal vectors in general settings.

Example: Splitting forces in physics

Say we know the weight of a block on a slope:

Can compute \vec{F}_{G} from the weight but we want: \vec{F}, the force acting on the block in the direction of the slope.

Note: \vec{F} and \vec{H} are orthogonal!
\rightarrow Idea: split \vec{F}_{G} in orthogonal components

