TMA 4115 Matematikk 3
 Lecture 25 for MTFYMA

Alexander Schmeding

NTNU

13. April 2016

In today's lecture we will ...

- learn more about orthogonality and orthogonal complements
- study orthogonal projection
- use the Gram-Schmidt algorithm to construct orthogonal (/orthonormal) bases

Inner product, length and orthogonality

Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ with components x_{i} and y_{i}, respectively.

Dot product/ Inner product

$$
\vec{x} \cdot \vec{y}=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{n} x_{i} y_{i} .
$$

Can use this to define

- Length of a vector: $\|\vec{x}\|=\sqrt{\vec{x} \cdot \vec{x}}$,
- Distance between \vec{x} and $\vec{y}: \operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|$,
- Orthogonality of vectors: \vec{x} and \vec{y} are orthogonal to each other if and only if $\vec{x} \cdot \vec{y}=0$.

Orthogonal Complement

Let $W \subseteq \mathbb{R}^{n}$ be non-empty. We say

- $\vec{z} \in \mathbb{R}^{n}$ is orthogonal to W if for all $\vec{v} \in W, \vec{v} \cdot \vec{z}=0$
- W^{\perp} is the set of all vectors in \mathbb{R}^{n} orthogonal to W (orthogonal complement of W).

Example:

For $\overrightarrow{0} \in \mathbb{R}^{n}$ we have $\{\overrightarrow{0}\}^{\perp}=\mathbb{R}^{n}$ and $\left(\mathbb{R}^{n}\right)^{\perp}=\{\overrightarrow{0}\}$.
$L=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\} \subseteq \mathbb{R}^{2}$ then $L^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
furthermore $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}=L^{\perp}$
If P is the $x-y$-plane in \mathbb{R}^{3} then $P^{\perp}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$

Orthogonal complement

20.14 Theorem

$W \subseteq \mathbb{R}^{n}$ a subspace with $W=\operatorname{span}\left\{u_{1}, \ldots, u_{p}\right\}$. Then the following holds:

1. $\vec{x} \in W^{\perp}$ if and only if $\vec{x} \cdot u_{i}=0$ for all $1 \leq i \leq p$
2. W^{\perp} is a subspace of \mathbb{R}^{n}
3. $\left(W^{\perp}\right)^{\perp}=W$

Examples associated to a $m \times n$-matrix A
$(\operatorname{Row} A)^{\perp}=\operatorname{Nul}(A)$ and $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$

Example: Splitting forces in physics

We know \vec{F}_{G} and want to split the force into two orthogonal components:

Develop orthogonal projections to achieve this.

Nearest points on subspaces

The result of the orthogonal projection is the "nearest point" on a given subspace in \mathbb{R}^{n}.

Let $\vec{x} \in \mathbb{R}^{3}$,
$E \subseteq \mathbb{R}^{n}$ subspace
Nearest point on E :
The point \vec{v} on E, with minimal distance to \vec{x}

Observe: $\vec{x}-\vec{v}$ is perpendicular to E, i.e. $\vec{x}-\vec{v} \in E^{\perp}$

21.7 The Gram-Schmidt Process

Let $W=\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\} \subseteq \mathbb{R}^{n}$ and $\vec{x}_{i} \neq 0$ for $1 \leq i \leq p$. Define

$$
\begin{aligned}
& \vec{u}_{1}=\vec{x}_{1} \\
& \vec{u}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1} \quad \text { if } \vec{u}_{2}=\overrightarrow{0} \text { discard and construct } \\
& \quad \text { with same formula, now for } \vec{x}_{3}
\end{aligned}
$$

$$
\vec{u}_{p}=\vec{x}_{p}-\sum_{i=1}^{p-1} \frac{\vec{x}_{p} \cdot \vec{v}_{i}}{\vec{v}_{i} \cdot \vec{v}_{i}} \vec{v}_{i} \quad \text { if } \vec{u}_{p}=\overrightarrow{0} \text { discard }
$$

Then $\left\{\vec{u}_{1}, \ldots, \vec{u}_{d}\right\}$ is an orthogonal basis for W (for some $1 \leq d \leq p$) and

$$
\operatorname{span}\left\{\vec{u}_{1}, \ldots, \vec{u}_{k}\right\}=\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{k}\right\} \quad \text { for } 1 \leq k \leq d
$$

