TMA 4115 Matematikk 3 Lecture 25 for MTFYMA

Alexander Schmeding

NTNU

13. April 2016

In today's lecture we will ...

- learn more about orthogonality and orthogonal complements
- study orthogonal projection
- use the Gram-Schmidt algorithm to construct orthogonal (/orthonormal) bases

Inner product, length and orthogonality

Let $\overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^n$ with components x_i and y_i , respectively.

Dot product/ Inner product

$$\overrightarrow{x} \cdot \overrightarrow{y} = \overrightarrow{x}^T \overrightarrow{y} = \sum_{i=1}^n x_i y_i.$$

Can use this to define

- Length of a vector: $\|\overrightarrow{x}\| = \sqrt{\overrightarrow{x} \cdot \overrightarrow{x}}$,
- **Distance** between \overrightarrow{x} and \overrightarrow{y} : dist $(\overrightarrow{u}, \overrightarrow{v}) = ||\overrightarrow{u} \overrightarrow{v}||$,
- **Orthogonality** of vectors: \overrightarrow{x} and \overrightarrow{y} are orthogonal to each other if and only if $\overrightarrow{x} \cdot \overrightarrow{y} = 0$.

Orthogonal Complement

Let $W \subseteq \mathbb{R}^n$ be non-empty. We say

- $\overrightarrow{z} \in \mathbb{R}^n$ is orthogonal to W if for all $\overrightarrow{v} \in W$, $\overrightarrow{v} \cdot \overrightarrow{z} = 0$
- W[⊥] is the set of all vectors in ℝⁿ orthogonal to W
 (orthogonal complement of W).

Example:

For
$$\overrightarrow{0} \in \mathbb{R}^n$$
 we have $\{\overrightarrow{0}\}^{\perp} = \mathbb{R}^n$ and $(\mathbb{R}^n)^{\perp} = \{\overrightarrow{0}\}$.
 $L = \operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\} \subseteq \mathbb{R}^2$ then $L^{\perp} = \operatorname{span}\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$.
furthermore $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}^{\perp} = \operatorname{span}\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\} = L^{\perp}$
If P is the $x - y$ -plane in \mathbb{R}^3 then $P^{\perp} = \operatorname{span}\left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

Orthogonal complement

20.14 Theorem

 $W \subseteq \mathbb{R}^n$ a subspace with $W = \operatorname{span}\{u_1, \ldots, u_p\}$. Then the following holds:

1.
$$\overrightarrow{x} \in W^{\perp}$$
 if and only if $\overrightarrow{x} \cdot u_i = 0$ for all $1 \leq i \leq p$

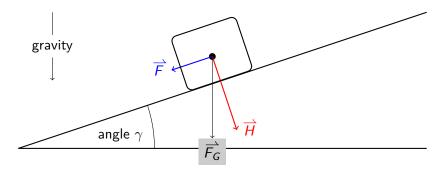
2.
$$W^{\perp}$$
 is a subspace of \mathbb{R}^n
3. $(W^{\perp})^{\perp} = W$

Examples associated to a $m \times n$ -matrix A

$$(\mathsf{Row} \mathsf{A})^\perp = \mathsf{Nul}(\mathsf{A})$$
 and $(\mathsf{Col} \mathsf{A})^\perp = \mathsf{Nul} \mathsf{A}^{\mathsf{T}}$

Example: Splitting forces in physics

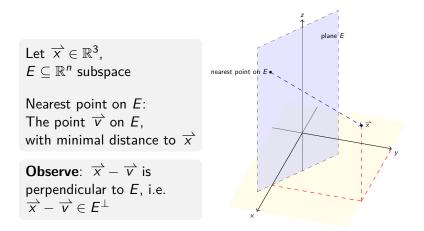
We know \overrightarrow{F}_G and want to split the force into two orthogonal components:



Develop orthogonal projections to achieve this.

Nearest points on subspaces

The result of the orthogonal projection is the "nearest point" on a given subspace in \mathbb{R}^n .



21.7 The Gram-Schmidt Process

 $\dot{\cdot} = \dot{\cdot}$

Let $W = \text{span}\{\overrightarrow{x}_1, \dots, \overrightarrow{x}_p\} \subseteq \mathbb{R}^n$ and $\overrightarrow{x}_i \neq 0$ for $1 \leq i \leq p$. Define

$$\vec{u}_1 = \vec{x}_1$$
$$\vec{u}_2 = \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 \quad \text{if } \vec{u}_2 = \vec{0} \text{ discard and construct}$$
with same formula now for \vec{x}_1

:

with same formula, now for \vec{x}_3

$$\overrightarrow{u}_{p} = \overrightarrow{x}_{p} - \sum_{i=1}^{p-1} \frac{\overrightarrow{x}_{p} \cdot \overrightarrow{v}_{i}}{\overrightarrow{v}_{i} \cdot \overrightarrow{v}_{i}} \overrightarrow{v}_{i} \qquad \text{if } \overrightarrow{u}_{p} = \overrightarrow{0} \text{ discard}$$

Then $\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_d\}$ is an orthogonal basis for W (for some $1\leq d\leq p)$ and

$$\mathsf{span}\ \{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k\}=\mathsf{span}\ \{\overrightarrow{x}_1,\ldots,\overrightarrow{x}_k\}\quad \text{for}\ 1\leq k\leq d$$