TMA 4115 Matematikk 3
 Lecture 26 for MTFYMA

Alexander Schmeding

NTNU
18. April 2016

In today's lecture we will

- review the Gram-Schmidt algorithm
- apply it to study least-square problems
- solve some least square problems associated to linear models

Inner product, length and orthogonality

Let \vec{x}, \vec{y} be vectors in \mathbb{R}^{n} with components x_{i} and y_{i}, respectively.
Dot product/ Inner product $\vec{x} \cdot \vec{y}=\vec{x}^{T} \vec{y}=\sum_{i=1}^{n} x_{i} y_{i}$.
\vec{x} and \vec{y} are orthogonal to each other if and only if $\vec{x} \cdot \vec{y}=0$.
For a subspace $W \subseteq \mathbb{R}^{n}$ we can split $\vec{y} \in \mathbb{R}^{n}$ uniquely into

$$
\vec{y}=\vec{y}_{w}+\vec{z}, \quad \vec{y}_{w} \in W, \quad \vec{z} \in W^{\perp}
$$

and obtain an orthogonal projection $\operatorname{proj}_{w}: \mathbb{R}^{n} \rightarrow W, \vec{y}^{\prime} \mapsto \vec{y}_{w}$. If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W, its easy to compute

$$
\vec{y}_{w}=\sum_{i=1}^{p} \frac{\stackrel{\rightharpoonup}{y}^{\vec{v}_{i}} \cdot \vec{v}_{i}}{\vec{v}_{i}} \vec{v}_{i}
$$

21.7 The Gram-Schmidt Process

Let $W=\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\} \subseteq \mathbb{R}^{n}$ and $\vec{x}_{i} \neq 0$ for $1 \leq i \leq p$. Define

$$
\begin{aligned}
& \vec{u}_{1}=\vec{x}_{1} \\
& \vec{u}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1} \quad \text { if } \vec{u}_{2}=\overrightarrow{0} \text { discard and construct } \\
& \quad \text { with same formula, now for } \vec{x}_{3}
\end{aligned}
$$

$$
\vec{u}_{p}=\vec{x}_{p}-\sum_{i=1}^{p-1} \frac{\vec{x}_{p} \cdot \vec{v}_{i}}{\vec{v}_{i} \cdot \vec{v}_{i}} \vec{v}_{i} \quad \text { if } \vec{u}_{p}=\overrightarrow{0} \text { discard }
$$

Then $\left\{\vec{u}_{1}, \ldots, \vec{u}_{d}\right\}$ is an orthogonal basis for W (for some $1 \leq d \leq p$) and

$$
\operatorname{span}\left\{\vec{u}_{1}, \ldots, \vec{u}_{k}\right\}=\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{k}\right\} \quad \text { for } 1 \leq k \leq d
$$

Application for Gram-Schmidt

(Spring 2011 Problem 5)

(a) Find an orthogonal basis of $\operatorname{Col}(A)$ with
$A=\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1\end{array}\right]$
(b) Find for $\vec{y}=\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]$ the nearest point in $\operatorname{Col}(A)$

Let \vec{x}_{i} be the i-th column of A. Recall
$\operatorname{Col}(A)=\operatorname{span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}\right\}$.
Apply Gram-Schmidt to the generating system $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}\right\}$ of $\operatorname{Col}(A)$.

Gram Schmidt on a generating system

Note that all \vec{x}_{i} are non-zero. Thus set $\vec{u}_{1}=\vec{x}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
Then $\vec{u}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \frac{\vec{u}_{1}}{u}} \vec{u}_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$,
$\vec{u}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \frac{u_{1}}{u_{1}}} \vec{u}_{1}-\frac{\vec{x}_{3} \cdot \vec{u}_{2}}{u_{2} \cdot \frac{u_{2}}{u_{2}}} \vec{u}_{2}=\overrightarrow{0}$ we get $\overrightarrow{0}$!
\rightsquigarrow discard \vec{u}_{3} and continue with the next vector \vec{x}_{4}.
$\vec{u}_{3}=\vec{x}_{4}-\frac{\vec{x}_{4} \cdot \vec{u}_{1}}{\frac{u_{1}}{u} \cdot \frac{u_{1}}{u}} \vec{u}_{1}-\frac{\vec{x}_{4} \cdot \vec{u}_{2}}{\frac{u_{2}}{u} \cdot \frac{u_{2}}{u}} \vec{u}_{2}=\overrightarrow{0}$
again $\overrightarrow{0}$, we discard!Since it was the last, an orthogonal basis of
$\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]\right\}$

Application of Gram-Schmidt

To answer part (b), we recall the

21.6 Best approximation theorem

$W \subseteq \mathbb{R}^{n}$ subspace, $\vec{y} \in \mathbb{R}^{n}$. Then $\vec{y}_{w}=\operatorname{proj}_{W}(\vec{y})$ is closest in W to \vec{y} :

$$
\|\vec{y}-\vec{y} w\|<\|\vec{y}-\vec{w}\|, \quad \vec{w} \in W \backslash\left\{\vec{y}_{w}\right\}
$$

We need to compute $\vec{y}_{\operatorname{CoI}(A)}$ as the nearest point to \vec{y} in $\operatorname{Col}(A)$.

$$
\stackrel{\rightharpoonup}{y}_{\operatorname{Col}(A)}=\frac{\vec{y} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{y} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}=\left[\begin{array}{c}
0 \\
5 \\
-2
\end{array}\right]
$$

Weight of baggage

What is the weight x of our suitcase?
If it is too heavy we have to pay extra on the airplane and we don't want that.
\rightarrow try to get an accurate weight.

On a scale

Second scale

weight $x=x_{1} \mathrm{~kg}$ weight $x=x_{2} \mathrm{~kg}$ weight $x=x_{3} \mathrm{~kg}$
What is the weight of our suitcase?

Weight of baggage II

From our scales we have the information:

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \leftrightarrow \begin{cases}x & =x_{1} \\
x & =x_{2} \\
x & =x_{3}\end{cases}
$$

Unless $x_{1}=x_{2}=x_{3}$ (unlikely), the linear system is inconsistent, i.e. has no exact solution.

Problem: No solution!

Can we find an "approximate" solution? This means a number y such that the errors $\left|x_{i}-y\right|$ are as small as possible.

Weight of baggage III

Idea: If $A \vec{x}=\vec{b}$ is inconsistent, lets try to find \vec{x} such that $A \vec{x}$ is as near as possible to \vec{b}.

Note $A \vec{x} \in \operatorname{Col}(A)$, hence if it is minimal $A \vec{x}=\operatorname{proj}_{\operatorname{Col}(A)}(\vec{b})$!
In our example $A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, we set $\vec{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$,
then $\operatorname{Col}(A)=\operatorname{span}\left\{\vec{u}_{1}\right\}$ and

$$
\operatorname{proj}_{C o l}(A)(\vec{b})=\frac{\vec{b} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \overrightarrow{u_{1}}=\left[\begin{array}{c}
\frac{x_{1}+x_{2}+x_{3}}{3} \\
\frac{x_{1}+x_{2}+x_{3}}{3} \\
\frac{x_{1}+x_{2}+x_{3}}{3}
\end{array}\right]
$$

Thus $A x=\operatorname{proj}_{C o l(A)}(\vec{b})$ shows: $x=\frac{x_{1}+x_{2}+x_{3}}{3}$.

