TMA 4115 Matematikk 3
 Lecture 27 for MTFYMA

Alexander Schmeding

NTNU
20. April 2016

In today's lecture we will discuss

- again least square problems,
- symmetric and orthogonal matrices,
- the Spectral Theorem for symmetric matrices

Least square solutions

$A m \times n$ matrix, $\vec{b} \in \mathbb{R}^{m} . \vec{y} \in \mathbb{R}^{n}$ is called least square solution of $A \vec{x}=\vec{b}$ if

$$
\|\vec{b}-A \vec{y}\| \leq\|\vec{b}-A \vec{x}\|, \quad \text { for all } \vec{x} \in \mathbb{R}^{n}
$$

Note: \vec{y} is a least square solution if and only if

- $A \vec{y}=\operatorname{proj}_{C o l(A)}(\vec{b})$
- It solves the normal equation $A^{T} A \vec{x}=A^{T} \vec{b}$

For every linear system there is a least square solution. It is the best (approximate) solution we can get.

Revisiting an example

Spring 2011 Problem 5

Let $A=\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]$. Find the nearest

Avoid Gram-Schmidt and compute a least square solution \vec{y} to $A \vec{x}=\vec{b}$ the nearest point is then $A \vec{y}$. Normal equation: $A^{T} A \vec{x}=A^{T} \vec{b}$ yields

$$
A^{T} A=\left[\begin{array}{cccc}
6 & 6 & 12 & -6 \\
6 & 11 & 7 & -1 \\
12 & 7 & 29 & -17 \\
-6 & -1 & -17 & 11
\end{array}\right]
$$

Can we simplify the problem so that we do not need $A^{T} A$?

Revisiting an example

Idea: $\operatorname{Col}(A)$ is important, but A is not!
Use the method with simpler matrix B with $\operatorname{Col}(B)=\operatorname{Col}(A)$.
In last lecture we saw that $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]$ is a basis of $\operatorname{Col}(A)$.
Set $B=\left[\begin{array}{cc}1 & 3 \\ 2 & 1 \\ -1 & -1\end{array}\right]$ and compute:

$$
B^{T} B=\left[\begin{array}{ll}
6 & 6 \\
6 & 5
\end{array}\right], B^{T} \stackrel{\rightharpoonup}{b}=\left[\begin{array}{c}
12 \\
7
\end{array}\right]
$$

Solving $B^{T} B \vec{x}=B^{T} \vec{b}$ yields the least square solution $\left[\begin{array}{c}3 \\ -1\end{array}\right]$

Revisiting an example

The nearest point to \vec{b} in $\operatorname{Col}(A)=\operatorname{Col}(B)$ is

$$
B\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
5 \\
-2
\end{array}\right]
$$

as before!

Remark

Can compute nearest points in a subspace by solving least square problems.
\rightarrow avoid Gram-Schmidt (= messy computation).

An observation

In setting up the normal equation we computed matrices of the form $A^{T} A$. Here are some examples:

$$
\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right], \quad\left[\begin{array}{cc}
4 & 17 \\
17 & 81
\end{array}\right], \quad\left[\begin{array}{cccc}
6 & 6 & 12 & -6 \\
6 & 11 & 7 & -1 \\
12 & 7 & 29 & -17 \\
-6 & -1 & -17 & 11
\end{array}\right]
$$

These matrices have an interesting structure:
Their transpose coincides with the matrix! ${ }^{1}$
These special matrices are called symmetric and we will now investigate them.

$$
{ }^{1} \text { By the rules of the transpose }\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A \text {. }
$$

Spectral Theorem for symmetric matrices

A symmetric $n \times n$ matrix, then the following holds:
(a) A has n real eigenvalues counting multiplicities ${ }^{a}$
(b) $\operatorname{dim} E_{\lambda}$ equals the multiplicity of the eigenvalue λ, Recall: $E_{\lambda}=$ eigenspace to eigenvalue λ
(c) $\lambda \neq \mu$ eigenvalues of A, then $E_{\lambda} \subseteq E_{\mu}^{\perp}$,
(d) A is orthogonally diagonalisable.

[^0]Spectrum (of a matrix) $=$ set of eigenvalues.
$A=P D P^{-1}$ with $P=\left[\begin{array}{lll}\vec{u}_{1} & \ldots & \vec{u}_{n}\end{array}\right]$ orthogonal, D a diagonal matrix (diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of A.) Since $P^{-1}=P^{T}$ we have

$$
\begin{aligned}
A=P D P^{T} & =\left[\begin{array}{lll}
\vec{u}_{1} & \ldots & \vec{u}_{n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vdots \\
\vec{u}_{n}^{T}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\lambda_{1} \vec{u}_{1} & \ldots & \lambda_{n} \vec{u}_{n}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vdots \\
\vec{u}_{n}^{T}
\end{array}\right]
\end{aligned}
$$

We obtain the so called spectral decomposition of A

$$
A=\lambda_{1} \vec{u}_{1} \vec{u}_{1}^{T}+\lambda_{2} \vec{u}_{2} \vec{u}_{1}^{T}+\cdots+\lambda_{n} \vec{u}_{n} \vec{u}_{n}^{T}
$$

Note: $\left(\vec{u}_{k} \vec{u}_{k}^{T}\right) \vec{x}=\operatorname{proj}_{\text {span }\left\{\vec{u}_{k}\right\}}(x)$

[^0]: ${ }^{a}$ Multiplicity of eigenvalue: Multiplicity of the root of the characteristic polynomial.
 Example: If $(\lambda-1)^{n}(\lambda+3)$ is the characteristic polynomial, $\lambda=1$ is an eigenvalue of multiplicity $n, \lambda=-3$ is eigenvalue of multiplicity 1 .

