# TMA 4115 Matematikk 3 Lecture 3 for MTFYMA 

Alexander Schmeding

NTNU
18. January 2014

## Overview: Operations on complex numbers

$$
\text { For } \begin{aligned}
w & =a+i b \\
z & =|w|(\cos (\theta)+i \sin (\theta)) \\
z+i y & =|z|(\cos (\psi)+i \sin (\psi)) \text { we can compute... }
\end{aligned}
$$

Sum $w+z$

$$
w+z=(x+y)+i(b+y))
$$

Product $w \cdot z$ and powers $z^{n}$ for $n \in \mathbb{N}$

$$
|w||z|(\cos (\theta+\psi)+i \sin (\theta+\psi)) \text { and } z^{n}=|z|^{n}(\cos (n \psi)+i \sin (n \psi)
$$

Conjugate $\bar{w}$

$$
\bar{w}=a-i b
$$

Reciprocal $z^{-1}$ and quotient $\frac{w}{z}$ for $z \neq 0$

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}} \text { and } \frac{w}{z}=\frac{w \cdot \bar{z}}{|z|^{2}}
$$

## Roots of complex numbers

Aim: For a given complex number $z$ find all complex numbers $w$ (roots) which solve

$$
w^{2}=z
$$

Or more generally for $n \in \mathbb{N}$ the numbers $w$ which solve

$$
\begin{equation*}
w^{n}=z \tag{1}
\end{equation*}
$$

these are called nth roots.
From 1.8 in last weeks lecture: If $w$ is an $n$th root of $z$, then by (1)

$$
\begin{aligned}
|w|^{n} & =|z| \quad(\text { or }|w|=\sqrt[n]{|z|}) \text { and } \\
n \cdot \arg (w) & =\arg (z) \quad\left(\text { or } \arg (w)=\frac{\arg (z)}{n}\right)
\end{aligned}
$$

## $n$th roots of complex numbers

Let $z=r(\cos (\theta)+i \sin (\theta))$ be a complex number and $n \in \mathbb{N}$.
We call

$$
z_{1}=\sqrt[n]{r}\left(\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right)
$$

the principal nth root of $z$.

## Examples:

$z=i=1\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)$ the principal $n$th root is $\cos \left(\frac{\pi}{2 n}\right)+i \sin \left(\frac{\pi}{2 n}\right)$
$z=0$ the principal $n$th root is 0 .

## Roots for $z=r(\cos (\theta)+i \sin (\theta)) \neq 0$ and $n \in \mathbb{N}$

There are $n$ distinct $n$th roots which can be computed via

$$
\begin{aligned}
z_{1} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right) \\
z_{2} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta+2 \pi}{n}\right)+i \sin \left(\frac{\theta+2 \pi}{n}\right)\right) \\
z_{3} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta+4 \pi}{n}\right)+i \sin \left(\frac{\theta+4 \pi}{n}\right)\right) \\
\vdots & \vdots \\
z_{n} & =\sqrt[n]{r}\left(\cos \left(\frac{\theta+2(n-1) \pi}{n}\right)+i \sin \left(\frac{\theta+2(n-1) \pi}{n}\right)\right)
\end{aligned}
$$

## Complex functions and the exponential map

Our next goal is to define functions depending on complex variables.

We need these functions to solve differential equations.
How do we define define a complex function?

- Copy the definition of a real function and use complex variables!


## Real functions

Recall that a real function is a triple

$$
f: U \rightarrow V, \quad x \mapsto f(x)
$$

where the parts of the triple are
$U \subseteq \mathbb{R}$ the domain (i.e. the numbers we apply $f$ to)
$V \subseteq \mathbb{R}$ the codomain (must contain all values of $f$ ) $x \mapsto f(x)$ a rule assigning to each $x$ an element $f(x)$

## Examples:

$$
\begin{aligned}
& g:(0,1) \rightarrow(0, \infty), \quad x \mapsto \frac{1}{x} \\
& \sin : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \sin (x)
\end{aligned}
$$

Here $(a, b)$ is the open interval from $a$ to $b$.

