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Complex functions

A complex function is a triple

f : U → V , x 7→ f (x)

where U ⊆ C (domain), V ⊆ C (codomain)
and x 7→ f (x) is a rule which assigns to x ∈ U a unique f (x) ∈ V .

Example: Complex polynomials
A function p : C→ C, p(z) =

∑n
k=0 akzk for a0, . . . , an ∈ C and

n ∈ N is called (complex) polynomial.
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For a complex polynomial p a number z0 is called root if p(z0) = 0.

Quadratic formula for roots
For p(z) = az2 + bz + c, a 6= 0 the roots of p are given by

−b ±
√

b2 − 4ac
2a (?)

Proof:

0 = p(z) = az2 + bz + c
⇔ 0 = 4a2z2 + 4abz + 4ac

= (2az)2 + 4abz + b2 − b2 + 4ac
⇔ b2 − 4ac = (2az + b)2

⇔ ±
√

b2 − 4ac = 2az + b

which yields (?) after solving for z .
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We already know how to solve the differential equations

y ′(t) = d
dt y(t) = f (y , t)

if the function f is “nice”.

We call such an equation a first order differential equation,
because it only involves the first derivative of the unknown y .

First order differential equations are “simple”, but the (physical)
world is complicated, hence it is described by more complicated
differential equations.
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3.1 Newtons second law

Newtons second law
The acceleration a of a body with mass m is proportional to the
net force F via

F = ma (1)

Question: What is the displacement y(t) of the body from a
reference point?

Acceleration a is rate of change of velocity v , i.e.

a =
d
dt v = v ′ (2)

Velocity v is rate of change of the displacement, i.e.

v =
d
dt y = y ′ (3)

Thus (2) becomes a = y ′′.
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What is the displacement y(t) of the body from a
reference point?

Finally, the net force F depends on time, displacement and
velocity, thus F is a function

F (t, y , v) = F (t, y , y ′) (using (3))

With Newtons second law (1) obtain

F (t, y , y ′) = my ′′

as a differential equation for the displacement y(t).
This is a second order differential equation since it involves
derivatives of y of up to second order.
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3.2 Definition

A second order differential equation is an equation of the form

d2

dt2 y(t) = f
(

y ,
d
dt y , t

)
(4)

where f is a given function.

A solution to the second order equation (4) is a function y which is
twice continuously differentiable and satisfies (4).

Usually we write y ′ = d
dt y(t) and y ′′ = d2

dt2 y(t), thus (4) reads:

y ′′ = f (t, y , y ′) (5)
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3.3 The vibrating spring
We consider a spring suspended from a beam:

0

m x0Attach weight m:
New equilibrium at height x0

Stretch and release the spring
. . . it will move!

m x1

Forces acting on weight in motion:
damping force D(v) (depends on velocity v = x ′),
external force F (t), Restoring force R(x) and gravity mg .
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A model for the position x(t) of the spring

Newtons second law (1) for the spring

ma = total force acting on the weight
= R(x) + mg + D(v) + F (t)

(6)

Velocity v = x ′ and acceleration a = v ′ = x ′′, thus (6) becomes
mx ′′ = R(x) + mg + D(x ′) + F (t). (7)

Hooke’s law
For some springs, experiments show that the restoring force is
R(x) = −kx for k > 0 constant and small x .

Assuming Hooke’s law, (7) becomes
mx ′′ = −kx + mg + D(x ′) + F (t). (8)
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