TMA 4115 Matematikk 3
 Lecture 5 for MTFYMA

Alexander Schmeding

NTNU
25. January 2016

3.2 Definition

A second order differential equation is an equation of the form

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} y(t)=f\left(y, \frac{d}{d t} y, t\right) \tag{4}
\end{equation*}
$$

where f is a given function. Usually we write instead of (4)

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \tag{5}
\end{equation*}
$$

A solution to the second order equation (4) is a function y which is twice continuously differentiable and satisfies (4).

3.3 The vibrating spring

We consider a spring suspended from a beam:

Forces acting on weight in motion:
damping force $D(v)$ (depends on velocity $v=x^{\prime}$), external force $F(t)$, Restoring force $R(x)$ and gravity $m g$.

A model for the position $x(t)$ of the spring

Newtons second law shows

$$
\begin{align*}
m a & =\text { total force acting on the weight } \\
& =R(x)+m g+D(v)+F(t) \tag{6}
\end{align*}
$$

Velocity $v=x^{\prime}$, acceleration $a=v^{\prime}=x^{\prime \prime}$ and Hooke's law let us rewrite (6) as

$$
\begin{equation*}
m x^{\prime \prime}=-k x+m g+D\left(x^{\prime}\right)+F(t) \quad k>0 . \tag{7}
\end{equation*}
$$

More experimental results transform (7) into

$$
\begin{equation*}
m x^{\prime \prime}=-k x+m g-\mu x^{\prime}+F(t) \quad \mu, k>0 . \tag{8}
\end{equation*}
$$

This equation measures the position x.

A model for the displacement $y(t)$ of the spring

Instead of (8) we want an equation for $y=x-x_{0}$. Assume: $F(t)=0$ and $x=x_{0}$ then $x^{\prime}=x^{\prime \prime}=0$ and (8) reads

$$
0=-k x_{0}+m g \quad \Leftrightarrow \quad k x_{0}=m g
$$

Substituting $y=x-x_{0}$ and $m g=k x_{0}$ into (8) we obtain

$$
\begin{equation*}
m y^{\prime \prime}=-k y-\mu y^{\prime}+F(t) \tag{9}
\end{equation*}
$$

or equivalent

$$
m y^{\prime \prime}+\mu y^{\prime}+k y=F(t)
$$

Is there a solution for every 2nd order differential equation?

3.6 Theorem

Let p, q and g be continuous functions with domain (α, β) (open interval for $\alpha<\beta$). Fix $t_{0} \in(\alpha, \beta)$ and $y_{0}, y_{1} \in \mathbb{R}$. There is one and only one function $y:(\alpha, \beta) \rightarrow \mathbb{R}$ which solves

$$
(\star)\left\{\begin{array}{l}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad \text { for } t \in(\alpha, \beta) \\
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}
\end{array}\right.
$$

3.7 Remark: Solution of (\star) exists on all of (α, β)

We need $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$ to get a unique solution. (compare with chapter on complex exponential function)

