TMA 4115 Matematikk 3
 Lecture 6 for MTFYMA

Alexander Schmeding

NTNU
27. January 2016

Linear (second order) differential equations are of the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where p, q and g depend only on t (not on y).
If the forcing term g is 0 , the equation is homogeneous, otherwise inhomogeneous.

An initial value problem (IVP) is a differential equation with enough initial values to specify a solution.
$u, v:(\alpha, \beta) \rightarrow \mathbb{R}$ are linearly independent $(o n(\alpha, \beta))$ if there is no $C \in \mathbb{C}$ with $u(t)=C v(t)$ for all $t \in(\alpha, \beta)$.

Tests for linear independence:

- Inspection
- if u, v solve the same linear homogeneous differential equation use their Wronskian $W(t)=u(t) v^{\prime}(t)-v(t) u^{\prime}(t)$. If $W(t) \neq 0$ then u, v are linearly independent.

Structure of the general solution

3.14 Theorem

Let y_{1}, y_{2} be linearly independent solutions to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Then the general solution to the differential equation is

$$
y(t)=A y_{1}(t)+B y_{2}(t)
$$

where $A, B \in \mathbb{C}$.
We call two linearly independent solutions for a second order homogeneous linear equation a fundamental set of solutions.

Strategy to solve homogeneous linear differential equations

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Obtain general solution

- Find two solutions u, v
- Check that u, v are linearly independent (Wronskian!)
- General solution $A u+B v$

Solve IVP $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$

- Need general solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$
- Use $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{1}$ to determine A and B

3.16 Example

We know that for $\omega \neq 0, \sin (\omega t)$ and $\cos (\omega t)$ solve

$$
\begin{equation*}
y^{\prime \prime}+\omega^{2} y=0 \tag{12}
\end{equation*}
$$

Compute Wronskian $W(t)=\omega\left(\cos (\omega t)^{2}+\sin (\omega t)^{2}\right)=\omega \neq 0$. $\{\sin (\omega t), \cos (\omega t)\}$ is a fundamental set of solutions and

$$
y(t)=A \sin (\omega t)+B \cos (\omega t) A, B \in \mathbb{C} \text { (general solution) }
$$

Now initial conditions $y(0)=2$ and $y^{\prime}(0)=1$: Insert the general solution:

$$
\begin{aligned}
& 2=y(0)=A \sin (0)+B \cos (0)=B \\
& 1=y^{\prime}(0)=A \omega \cos (0)-B \omega \sin (0)=A \omega
\end{aligned}
$$

$y(t)=\frac{1}{\omega} \sin (\omega t)+2 \sin (\omega t)$ solves IVP (12), $y(0)=2, y^{\prime}(0)=1$.

Problem: How to find any solution?

We know what to do if we already found solutions to a linear homogeneous equation. However, how do we find these solutions?

Goal: Construct solutions for simpler homogeneous linear equations, i.e. equations with constant coefficients.

$$
\text { (i.e. } p \equiv \text { const, } q \equiv \text { const) }
$$

Idea: Consider

$$
y^{\prime}+q y=0, \quad q \in \mathbb{C}
$$

We know that $y(t)=C e^{-q t}$ solves the equation for all $C \in \mathbb{C}$. $\operatorname{Try} y(t)$ as a solution to a second order homogeneous equation.

