TMA 4115 Matematikk 3 Lecture 6 Part 2 for MTFYMA

Alexander Schmeding

NTNU

27. January 2016

A linear (second order) differential equation

$$y'' + py' + qy = g(t) \tag{1}$$

where $p, q \in \mathbb{R}$ and g is a given function is called linear (inhomogeneous) differential equation with constant coefficients.

Solve the homogeneous equation associated to (1):

$$y'' + py' + qy = 0 \tag{4}$$

using the associated characteristic polynomial

$$\lambda^2 + p\lambda + q = 0. \tag{5}$$

We distinguish three cases depending on the characteristic roots:

Solutions for equations with constant coefficients

Case 1 $p^2 - 4q > 0$, i.e. two distinct, real roots λ_1 and λ_2 . Fundamental set of solutions:

$$y_1(t) = e^{\lambda_1 t} \quad y_2(t) = e^{\lambda_2 t}$$

Case 2 $p^2 - 4q < 0$, we have two distinct, complex roots $\lambda_1 = a + ib$ and $\overline{\lambda_1}$. Fundamental set of (real valued) solutions:

$$y_1(t) = e^{at} \cos(bt)$$
 $y_2(t) = e^{at} \sin(bt)$

Case 3 $p^2 - 4q = 0$, there is one repeated real root λ_1 . Fundamental set of solutions:

$$y_1(t) = e^{\lambda_1 t}, \quad y_2(t) = t e^{\lambda_1 t}$$

Harmonic motion

An important example of a linear equations with constant coefficients is the equation of **harmonic motion**

$$y'' + 2cy' + \omega_0^2 y = f(t)$$
 (11)

with $c, \omega_0 \in \mathbb{R}$ and f(t) a given function.We call c, the dampening parameter ω_0 , the natural frequency

Example: The spring equation (Chapter 3)

$$my'' = -ky - \mu y' + F(t)$$
 $k, \mu > 0$

or equivalently

$$y'' + \frac{\mu}{m}y' + \frac{k}{m}y = \frac{F(t)}{m}$$
 (12)

Simple Harmonic motion (i.e. $\mu = 0 = F(t)$)

Have $\lambda^2 + \frac{k}{m} = 0$ with (two complex) characteristic roots $\pm \sqrt{-\frac{k}{m}} = \pm i \sqrt{\frac{k}{m}} = \pm i \omega_0$. General (real) solution of (12) is $v(t) = Ae^{0t}\cos(\omega_0 t) + Be^{0t}\sin(\omega_0 t)$ $= A\cos(\omega_0 t) + B\sin(\omega_0 t)$ $A, B \in \mathbb{R}$ plotted for A,B=1, $\omega_0=4$ No Damping or forcing: Solution oscillates with natural frequency $\omega_0 = \sqrt{\frac{k}{m}}$