TMA 4115 Matematikk 3
 Lecture 6 Part 2 for MTFYMA

Alexander Schmeding

NTNU
27. January 2016

A linear (second order) differential equation

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g(t) \tag{1}
\end{equation*}
$$

where $p, q \in \mathbb{R}$ and g is a given function is called linear (inhomogeneous) differential equation with constant coefficients.

Solve the homogeneous equation associated to (1):

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=0 \tag{4}
\end{equation*}
$$

using the associated characteristic polynomial

$$
\begin{equation*}
\lambda^{2}+p \lambda+q=0 \tag{5}
\end{equation*}
$$

We distinguish three cases depending on the characteristic roots:

Solutions for equations with constant coefficients

Case $1 p^{2}-4 q>0$, i.e. two distinct, real roots λ_{1} and λ_{2}.
Fundamental set of solutions:

$$
y_{1}(t)=e^{\lambda_{1} t} \quad y_{2}(t)=e^{\lambda_{2} t}
$$

Case $2 p^{2}-4 q<0$, we have two distinct, complex roots $\lambda_{1}=a+i b$ and $\overline{\lambda_{1}}$. Fundamental set of (real valued) solutions:

$$
y_{1}(t)=e^{a t} \cos (b t) \quad y_{2}(t)=e^{a t} \sin (b t)
$$

Case $3 p^{2}-4 q=0$, there is one repeated real root λ_{1}.
Fundamental set of solutions:

$$
y_{1}(t)=e^{\lambda_{1} t}, \quad y_{2}(t)=t e^{\lambda_{1} t}
$$

Harmonic motion

An important example of a linear equations with constant coefficients is the equation of harmonic motion

$$
\begin{equation*}
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=f(t) \tag{11}
\end{equation*}
$$

with $c, \omega_{0} \in \mathbb{R}$ and $f(t)$ a given function. We call
c, the dampening parameter
ω_{0}, the natural frequency
Example: The spring equation (Chapter 3)

$$
m y^{\prime \prime}=-k y-\mu y^{\prime}+F(t) \quad k, \mu>0
$$

or equivalently

$$
\begin{equation*}
y^{\prime \prime}+\frac{\mu}{m} y^{\prime}+\frac{k}{m} y=\frac{F(t)}{m} \tag{12}
\end{equation*}
$$

Simple Harmonic motion (i.e. $\mu=0=F(t)$)

Have $\lambda^{2}+\frac{k}{m}=0$ with (two complex) characteristic roots $\pm \sqrt{-\frac{k}{m}}= \pm i \sqrt{\frac{k}{m}}= \pm i \omega_{0}$. General (real) solution of (12) is

$$
\begin{aligned}
y(t) & =A e^{0 t} \cos \left(\omega_{0} t\right)+B e^{0 t} \sin \left(\omega_{0} t\right) \\
& =A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \quad A, B \in \mathbb{R}
\end{aligned}
$$

No Damping or forcing: Solution oscillates with natural frequency $\omega_{0}=\sqrt{\frac{k}{m}}$

