TMA 4115 Matematikk 3 Lecture 8 for MTFYMA

Alexander Schmeding

NTNU

3. February 2016

In this lecture we discuss:

- More on the forced harmonic motion
- Solving inhomogeneous equations by "Variation of parameters"

A general solution to the inhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \tag{1}
\end{equation*}
$$

is of the form

$$
y(t)=y_{p}(t)+A y_{1}(t)+B y_{2}(t), A, B \in \mathbb{C} .
$$

Here

1. y_{1}, y_{2} are a fundamental system for the associated homogeneous system
2. y_{p} is a particular solution to the inhomogeneous system If the forcing term $f(t)$ is "nice" we can use the method of undetermined coefficients to compute y_{p} in step 2.

Method of undetermined coefficients

Guideline for the method

If the form of the forcing term f replicates under differentiation, look for a solution with the same form (with a parameter).

Complex method for trigonometric terms
Solve

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

for forcing term $f(t)=A \cos (w t)$ or $f(t)=A \sin (w t)$ with $A \in \mathbb{R}$.
Idea: $A \cos (w t)=\operatorname{Re}\left(A e^{w i t}\right)$ and $A \sin (w t)=\operatorname{Im}\left(A e^{w i t}\right)$.

Strategy

- Find a particular solution z_{p} of $z^{\prime \prime}+p(t) z^{\prime}+q(t) z=A e^{\text {wit }}$
- The real part of z_{p} solves the equation for $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=A \cos (t)$
(imaginary part yields solution for forcing term $A \sin (w t)$)

5.8 Example $y^{\prime \prime}+2 y^{\prime}-3 y=5 \sin (3 t)$

Solving $z^{\prime \prime}+2 z^{\prime}-4 z=5 e^{3 i t}$ we get $y_{p}(t)=-\frac{2+i}{6} e^{3 i t}$.

$$
\begin{aligned}
-\frac{2+i}{6} e^{3 i t} & =\frac{1}{6}\left(-2 \cos (3 t)-i \cos (3 t)-2 i \sin (3 t)-i^{2} \sin (3 t)\right) \\
& =-\frac{1}{3} \cos (3 t)+\frac{1}{6} \sin (3 t)-i\left(\frac{1}{6} \cos (3 t)+\frac{1}{3} \sin (3 t)\right)
\end{aligned}
$$

$$
\left.y_{p}(t)=\operatorname{Im}\left(-\frac{2+i}{6} e^{3 i t}\right)=-\frac{1}{6} \cos (3 t)-\frac{1}{3} \sin (3 t)\right)
$$

(same as in Example 5.3)

Forced harmonic motion: Undampened case

Consider a forced harmonic motion

$$
\begin{equation*}
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t), \quad A \neq 0 \tag{7}
\end{equation*}
$$

with $c, \omega_{0}, \omega \in \mathbb{R}$ and
c, the dampening parameter
ω_{0}, the natural frequency
ω, the driving frequency
Assume that $c=0$, i.e. no damping in the harmonic motion.
Fundamental set of solutions for (7) and $c=0$ is

$$
y_{1}(t)=\cos \left(\omega_{0} t\right), \quad y_{2}(t)=\sin \left(\omega_{0} t\right)
$$

Case 1: $\omega \neq \omega_{0}$

Use undetermined coefficients to solve (7) for $c=0$.

Trial solution:

$y_{p}(t)=a \cos (\omega t)+b \sin (\omega t)$.
Insert in (7) and solve to find $a=\frac{A}{\omega^{2}-\omega_{0}^{2}}, b=0$ whence

$$
y(t)=\frac{A}{\omega^{2}-\omega_{0}^{2}} \cos (\omega t)+r \cos \left(\omega_{0} t\right)+s \sin \left(\omega_{0} t\right), \quad r, s \in \mathbb{R}
$$

is the general solution to (7).
Solving the IVP (7), $y(0)=0, y^{\prime}(0)=0$ yields

$$
y(t)=\frac{A}{\omega^{2}-\omega_{0}^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)
$$

Example plot: $A=23, \omega=12$ and $\omega_{0}=11$

Case $\omega_{0} \neq \omega$: Fast oscillation with slowly varying amplitude

Case 2: $\omega=\omega_{0}$

For $\omega=\omega_{0}$ the trial solution solves the homogeneous equation.

Trial solution

$t(a \cos (\omega t)+b \sin (\omega t))$ (Multiply trial solution from Case 1 by t)

Solve to find

$$
y(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)+r \cos \left(\omega_{0} t\right)+s \sin \left(\omega_{0} t\right), r, s \in \mathbb{R}
$$

the general solution to (7). With initial conditions $y(0)=0, y^{\prime}(0)=0$ this reduces to

$$
y(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)
$$

Example plot: $A=7, \omega=\omega_{0}=11$

The solution $y(t)=\frac{7 t}{22} \sin (11 t)$

Case $\omega_{0}=\omega$: The amplitude grows linearly with time

6. Inhomogeneous equations: Variation of parameters

Method of undertermined coefficients works only for "nice" forcing terms.

Goal now, construct solutions for arbitrary f and

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \tag{1}
\end{equation*}
$$

Idea: To find a particular solution set

$$
y_{p}(t)=v(t) y_{h}(t)
$$

where y_{h} solves the homogeneous equation, v is an unknown function. Insert into equation to find v !

6.2 Summary of the method

- We need a fundamental set y_{1}, y_{2} of solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
- Define $y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$ with unknown functions v_{1}, v_{2}
- Solve

$$
\begin{aligned}
& v_{1}(t)=\int \frac{-y_{2}(t) f(t)}{y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)} d t \\
& v_{2}(t)=\int \frac{y_{1}(t) f(t)}{y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)} d t
\end{aligned}
$$

to obtain y_{p}.
Alternatively, if you can't remember the formula: Derive it as explained in the lecture 6.1.

