TMA 4115 Matematikk 3 Lecture 9 for MTFYMA

Alexander Schmeding

NTNU

08. February 201

In this lecture we discuss:

- Systems of linear equations...
- ... their connection to matrices.
- Gaussian elimination
- solution sets to linear equations

Looking back and beyond

In the last chapters we wanted to construct solutions for

$$y'' + p(t)y' + q(t)y = f(t)$$

Recall that ...

- values of parameters in solutions are determined by solving linear equations.
- the Wronskian determines linear independence of solutions
- ...and in **6.1** the Wronskian showed that the system of linear equations is solvable.

Now: Study these objects to deal with linear equations efficiently.

7. Systems of Linear Equations

In this chapter we discuss how to solve linear equations in an efficient manner. (\rightarrow Matrices, Gaussian elimination)

A linear equation is an equation

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$
 (1)

with $n \in \mathbb{N}$, b and the **coefficients** a_1, \ldots, a_n being real or complex numbers.

Example

 $4x_1 - 5x_2 = -2$ and $x_2 = \sqrt{\pi}x_1$ are linear, $4x_1 + x_1x_2 = 0$ and $x_2 = \sqrt{x_1}$ are not linear.

Systems of linear equations

A system of linear equations (or linear system) is a collection of linear equations involving the same variables x_1, \ldots, x_n .

A **solution** of the linear system is a list (s_1, \ldots, s_n) of numbers such that each equation is true statement when we replace each x_i with s_i , respectively.

The set of all solutions is called **solution set** of the linear system.

Two linear systems are **equivalent** if they have the same solution set.

Linear Equations in chemistry

We want to balance the reaction equation

 $\begin{array}{l} {\sf Ethanol} + {\sf Oxygen} \longrightarrow {\sf Carbondioxide} + {\sf Water} \\ {\it C}_2 {\it H}_6 {\it O} + {\it O}_2 \longrightarrow {\it CO}_2 + {\it H}_2 {\it O} \end{array}$

Introduce indeterminates x_1, x_2, x_3, x_4 and write

$$x_1 C_2 H_6 O + x_2 O_2 = x_3 C O_2 + x_4 H_2 O$$

Note: $x_1C_2H_6O$ has $2x_1$ atoms of carbon, $6x_1$ atoms of hydrogen and x_1 atoms of oxygen.

Idea

To generate a system of linear equations we generate an equation for each type of atom in the equation.

Linear Equations in chemistry

$$x_1 C_2 H_6 O + x_2 O_2 = x_3 C O_2 + x_4 H_2 O$$

Find a solution with all $x_i \in \mathbb{Z}$. Use element relations to generate:

$$2x_1 + 0x_2 - 1x_3 - 0x_4 = 0$$

$$6x_1 + 0x_2 - 0x_3 - 2x_4 = 0$$

$$1x_1 + 2x_2 - 2x_3 - 1x_4 = 0$$

Solve these equations \leftrightarrow Balance the chemical reaction

Solution sets of linear equations

Linear equations (of two variables) describe lines in the plane.

Similar arguments apply to systems with more variables.

Solution sets of linear equations

A system of linear equations has

- no solution, or
- exactly one solution, or
- infinitely many solutions

We call a linear system **consistent** if it has one or infinitely many solutions and **inconsistent** if it has no solution.