# TMA 4115 Matematikk 3 Lecture 9 for MTFYMA 

Alexander Schmeding

NTNU
08. February 201

In this lecture we discuss:

- Systems of linear equations...
- ... their connection to matrices.
- Gaussian elimination
- solution sets to linear equations


## Looking back and beyond

In the last chapters we wanted to construct solutions for

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Recall that...

- values of parameters in solutions are determined by solving linear equations.
- the Wronskian determines linear independence of solutions
- ...and in 6.1 the Wronskian showed that the system of linear equations is solvable.
Now: Study these objects to deal with linear equations efficiently.


## 7. Systems of Linear Equations

In this chapter we discuss how to solve linear equations in an efficient manner. ( $\rightarrow$ Matrices, Gaussian elimination)

A linear equation is an equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b \tag{1}
\end{equation*}
$$

with $n \in \mathbb{N}, b$ and the coefficients $a_{1}, \ldots, a_{n}$ being real or complex numbers.

## Example

$4 x_{1}-5 x_{2}=-2$ and $x_{2}=\sqrt{\pi} x_{1}$ are linear,
$4 x_{1}+x_{1} x_{2}=0$ and $x_{2}=\sqrt{x_{1}}$ are not linear.

## Systems of linear equations

A system of linear equations (or linear system) is a collection of linear equations involving the same variables $x_{1}, \ldots, x_{n}$.

A solution of the linear system is a list $\left(s_{1}, \ldots, s_{n}\right)$ of numbers such that each equation is true statement when we replace each $x_{i}$ with $s_{i}$, respectively.
The set of all solutions is called solution set of the linear system.
Two linear systems are equivalent if they have the same solution set.

## Linear Equations in chemistry

We want to balance the reaction equation

$$
\begin{aligned}
& \text { Ethanol }+ \text { Oxygen } \longrightarrow \text { Carbondioxide }+ \text { Water } \\
& \qquad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Introduce indeterminates $x_{1}, x_{2}, x_{3}, x_{4}$ and write

$$
x_{1} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+x_{2} \mathrm{O}_{2}=x_{3} \mathrm{CO}_{2}+x_{4} \mathrm{H}_{2} \mathrm{O}
$$

Note: $x_{1} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ has $2 x_{1}$ atoms of carbon, $6 x_{1}$ atoms of hydrogen and $x_{1}$ atoms of oxygen.

## Idea

To generate a system of linear equations we generate an equation for each type of atom in the equation.

## Linear Equations in chemistry

$$
x_{1} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+x_{2} \mathrm{O}_{2}=x_{3} \mathrm{CO}_{2}+x_{4} \mathrm{H}_{2} \mathrm{O}
$$

Find a solution with all $x_{i} \in \mathbb{Z}$. Use element relations to generate:

$$
\begin{aligned}
& 2 x_{1}+0 x_{2}-1 x_{3}-0 x_{4}=0 \\
& 6 x_{1}+0 x_{2}-0 x_{3}-2 x_{4}=0 \\
& 1 x_{1}+2 x_{2}-2 x_{3}-1 x_{4}=0
\end{aligned}
$$

Solve these equations $\leftrightarrow$ Balance the chemical reaction

## Solution sets of linear equations

Linear equations (of two variables) describe lines in the plane.

Solutions of

$$
\begin{aligned}
& a x_{1}+b x_{2}=c \\
& d x_{1}+e x_{2}=f
\end{aligned}
$$

are points which simultaneously lie on both lines.


Similar arguments apply to systems with more variables.

## Solution sets of linear equations

A system of linear equations has

- no solution, or
- exactly one solution, or
- infinitely many solutions

We call a linear system consistent if it has one or infinitely many solutions and inconsistent if it has no solution.

