
Norges teknisk–naturvitenskapelige
universitet
Institutt for matematiske fag

TMA4115 Calculus 3
Spring 2016

Øving 3

4.1 Second-Order Equations

For each of the second-order differential equations in Exercises 1–8, decide whether the
equation is linear or nonlinear. If the equation is linear, state whether the equation is
homogeneous or inhomogeneous.

1. y′′ + 3y′ + 5y = 3 cos 2t

2. t2y′′ = 4y′ − sin t

3. t2y′′ + (1− y)y′ = cos 2t

4. ty′′ + (sin t)y′ = 4y − cos 5t

5. t2y′′ + 4yy′ = 0

6. y′′ + 4y′ + 7y = 3e−t sin t

7. y′′ + 3y′ + 4 sin y = 0

8. (1− t2)y′′ = 3y

In Exercises 13 and 14, show, by direct substitution, that the given functions y1(t) and y2(t)
are solutions of the given differential equation. Then verify, again by direct substitution,
that any linear combination C1y1(t) + C2y2(t) of the two solutions is also a solution.

13. y′′ − y′ − 6y = 0, y1(t) = e3t, y2(t) = e−2t

14. y′′ + 4y = 0, y1(t) = cos 2t, y2(t) = sin 2t

In Exercise 17–20, use Definition 1.22 to explain why y1(t) and y2(t) are linearly indepen-
dent solutions of the given differential equation. In addition calculate the Wronskian and
use it to explain the independence of the given solutions.

17. y′′ − y′ − 2y = 0, y1(t) = e−t, y2(t) = e2t

18. y′′ + 9y = 0, y1(t) = cos 3t, y2(t) = sin 3t

19. y′′ + 4y′ + 13y = 0, y1(t) = e−2t cos 3t, y2(t) = e−2t sin 3t

20. y′′ + 6y′ + 9y = 0, y1(t) = e−3t, y2(t) = te−3t

21. (Optional extra) Show that the functions

y1(t) = t2 and y2(t) = t|t|

are linearly independent on (−∞,∞). Next, show that the Wronskian of the two functions
is identically zero on the interval (−∞,∞). Why doesn’t this result contradict Proposition
1.27?
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26. (Optional extra) Unfortunately, Theorem 1.23 does not show us how to find two inde-
pendent solutions. However, there is a technique that can be used to find a second solution
when one solution is known.

(a) Show that y1(t) = t2 is a solution of

t2y′′ + ty′ − 4y = 0. (1)

(b) Let y2(t) = vy1(t) = vt2, where v is a yet to be determined function of t. Note that
if y2/y1 = v and v is nonconstant, then y1 and y2 are independent. Show that the
substitution y2 = vt2 reduces equation (1) to the separable equation

5v′ + tv′′ = 0. (2)

Solve equation (2) for v, form the solution y2 = vt2, and then state the general
solution of equation (1).

4.3 Linear, Homogeneous Equations with Constant Coefficients

The equations in Exercises 1 and 2 have distinct, real, characteristic roots. Find the general
solution in each case.

1. y′′ − y′ − 2y = 0

2. 2y′′ − 3y′ − 2y = 0

The equations in Exercises 9 and 10 have complex characteristic roots. Find the general
solution in each case.

9. y′′ + y = 0

10. y′′ + 4y = 0

The equations in Exercises 17 and 18 have repeated, real, characteristic roots. Find the
general solution in each case.

17. y′′ − 4y′ + 4y = 0

18. y′′ − 6y′ + 9y = 0

In Exercise 25–29, find the solution of the given initial value problem.

25. y′′ − y′ − 2y = 0, y(0) = −1, y′(0) = 2

26. 10y′′ − y′ − 3y = 0, y(0) = 1, y′(0) = 0

27. y′′ − 2y′ + 17y = 0, y(0) = −2, y′(0) = 3

28. y′′ + 25y = 0, y(0) = 1, y′(0) = −1
29. y′′ + 10y′ + 25y = 0, y(0) = 2, y′(0) = −1

38. (Optional extra) Given that the characteristic equation λ2 + pλ + q = 0 has a double
root, λ = λ1, show, by direct substitution, that y = teλ1t is a solution of y′′+ py′+ qy = 0.
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4.4 Harmonic Motion

In Exercise 7–10, place each equation in the form y = Ae−ct cos(ωt − φ). Then, on one
plot, place the graph of y = Ae−ct cos(ωt − φ), y = Ae−ct, and y = −Ae−ct. For the last
two, use a different line style and/or color that for the first.

7. y = e−t/2(cos 5t+ sin 5t)

8. y = e−t/4(
√
3 cos 4t− sin 4t)

9. y = e−0.1t(0.2 cos 2t+ 0.1 sin 2t)

10. y = e−0−2t(cos 4.2t− 1.2 sin 4.2t)

13. The undamped system

2

5
x′′ + kx = 0, x(0) = 2, x′(0) = v0

is observed to have period π/2 and amplitude 2. Find k and v0.

14. Consider the undamped oscillator

mx′′ + kx = 0, x(0) = x0, x′(0) = v0.

Show that the amplitude of the resulting motion is
√
x20 +mv20/k.

21. (Optional extra) If µ > 2
√
km, the system mx′′ + µx′ + kx = 0 is over-damped. The

system is allowed to come to equilibrium. Then the mass is given a sharp tap, imparting
an instantaneous downward velocity v0.

(a) Show that the position of the mass is given by

x(t) =
v0
γ
e−µt/(2m) sinh γt,

where

γ =

√
µ2 − 4mk

2m
.

(b) Show that the mass reaches its lowest point at

t =
1

γ
tanh−1

2mγ

µ
,

a time independent initial conditions.

(c) Show that, in the critically damped case, the time it takes the mass to reach its
lowest point is given by t = 2m/µ.
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