

2.1 Matrix Operations

1. Compute each of the following matrix sum or product if it is defined. If an expression is undefined, explain why. Compute -2A, B - 2A, AC, and CD, where

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}.$$

10. Let $A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}$, and $C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$. Verify that AB = AC and yet $B \neq C$.

11. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$. Compute *AD* and *DA*. Explain how the

columns or rows of A change when \overline{A} is multiplied by D on the right or on the left. Find a 3×3 matrix, not the identity matrix or the zero matrix, such that AB = BA.

29. (Optional Extra) Prove Theorem 2(b) and 2(c). Use the row-column rule. The (i, j)-entry in A(B + C) can be written as

$$a_{i1}(b_{1j} + c_{1j}) + \dots + a_{in}(b_{nj} + c_{nj})$$
 or $\sum_{k=1}^{n} a_{ik}(b_{kj} + c_{kj})$

33. (Optional Extra) Prove Theorem 3(d). (*Hint:* Consider the *j*th row of $(AB)^T$.)

2.2 The Inverse of a Matrix

25. Prove the following for $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that if ad - bs = 0, then the equation $A\mathbf{x} = \mathbf{0}$ has more than one solution. Why does this imply that A is not invertible? (*Hint:* First consider a = b = 0. Then, if a and b are not both zero, consider the vector $\mathbf{x} = \begin{bmatrix} -b \\ a \end{bmatrix}$.)

31. Find the inverses of the matrices if they exist. Use the algorithm introduced in this section.

$$\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$

24. (Optional Extra) Suppose A is $n \times n$ and the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each **b** in \mathbb{R}^n . Explain why A must be invertible. (*Hint:* Is A row equivalent to I_n ?)

2.3 Characterizations of Invertible Matrices

Determine which of the matrices in Exercises 2 and 7 are invertible. Use as few calculations as possible. Justify you answers.

2.

	[−1	-3	0	1]
	3	5	8	$\begin{bmatrix} 1 \\ -3 \\ 2 \\ 1 \end{bmatrix}$
$\begin{bmatrix} -4 & 6\\ 6 & -9 \end{bmatrix}$	-2	2 -6	3	2
$\begin{bmatrix} 6 & -9 \end{bmatrix}$	0	-1	2	1

7.

11. The matrices in this Exercise are all $n \times n$. Each part of the exercise has an *implication* of the form "If "statement 1" then "statement 2"." Mark an implication as True if the truth of "statement 2" *always* follows whenever "statement 1" happens to be true. An implication is False if there is an instance which "statement 2" is false but "statement 1" is true. Justify each answer.

- a. If the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
- b. If the columns of A span \mathbb{R}^n , then the columns are linearly independent.
- c. If A is an $n\times n$ matrix, then the equation $A{\bf x}={\bf b}$ has at least one solution for each ${\bf b}$ in \mathbb{R}^n
- d. If the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, then A has fewer then n pivot positions.
- e. If A^T is not invertible, then A is not invertible.

13. (Optional Extra) An $m \times n$ upper triangular matrix is one whose entries below the main diagonal are 0's (as in Exercise 8). When is a square upper triangular matrix invertible? Justify your answer.

2.5 Matrix Factorization

In Exercises 1 and 4, solve the equation $A\mathbf{x} = \mathbf{b}$ by using the *LU* factorization given for *A*. In Exercise 1, also solve $A\mathbf{x} = \mathbf{b}$ by ordinary row reduction.

1.

$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -7 \\ 5 \\ 2 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

4.

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

9. Find an LU factorization of the matrices (with L unit lower triangular).

$$\begin{bmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6 \end{bmatrix}$$

24. (Optional Extra) (*QR Factorization*) Suppose A = QR, where Q and R are $n \times n$, R is invertible and upper triangular, and Q has the property that $Q^TQ = I$. Show that for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution. What computations with Q and R will produce the solution.

3.1 Introduction to Determinants

2. Compute the determinants using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.

$$\begin{vmatrix} 0 & 4 & 1 \\ 5 & -3 & 0 \\ 2 & 3 & 1 \end{vmatrix}$$

Compute the determinants in Exercises 9 and 12 by a cofactor expansion. At each step, choose a row or column that involves the least amount of computation.

9.

 $4 \ 0 \ 0$ 50 0 0 13 $1 \ 7 \ 2 \ -5$ $\begin{vmatrix} 7 \\ 2 \\ 3 \end{vmatrix}$ $\begin{array}{ccc} -2 & 0 & 0 \\ 6 & 3 & 0 \end{array}$ $3 \ 0 \ 0$ 0 8 3 1 $\overline{7}$ -84

12.

37. Let
$$A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$$
. Write 5*A*. Is det 5*A* = 5 det *A*?

38. (Optional Extra) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and let k be a scalar. Find a formula that relates det kA to k and det A.

3.2 Properties of Determinants

10. Find the determinant by row reduction to echelon form.

1	3	-1	0	-2
$\begin{array}{c} 1\\ 0 \end{array}$	2	-4	-2	-6
-2	-6	2	3	10
1	5	-6	2	-3
0	2	-4	5	$ \begin{array}{c} 10 \\ -3 \\ 9 \end{array} $

40. Let A and B be 4×4 matrices, with det A = -3 and det B = -1. Compute:

- a. $\det AB$
- b. $\det B^5$
- c. $\det 2A$
- d. det $A^T B A$
- e. $\det B^{-1}AB$

33. (Optional Extra) Let A and B be square matrices. Show that even though AB and BA may not be equal, it is always true that $\det AB = \det BA$.