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4.4 Coordinate Systems

In Exercise 3 and 4, find the vector x determined by the given coordinate vector [x]B and
the given basis B.
3.

B =


 1
−4
3

 ,
 5

2
−2

 ,
 4
−7
0

 , [x]B =

 3
0
−1


4.

B =


−12

0

 ,
 3
−5
2

 ,
 4
−7
3

 , [x]B =

−48
−7


7. Find the coordinate vector [x]B for x relative to the given basis B = {b1,b2,b3}.

b1 =

 1
−1
−3

 ,b2 =

−34
9

 ,b3 =

 2
−2
4

 ,x =

 8
−9
6



21. (Optional Extra) Let B =

{[
1
−4

]
,

[
−2
9

]}
. Since the coordinate mapping determined

by B is a linear transformation from R2 into R2, this mapping must be implemented by
some 2× 2 matrix A. Find it. (Hint: Multiplication by A should transform a vector x into
its coordinate vector [x]B.)

4.5 The Dimension of a Vector Space

3. For each subspace in the exercise, (a) find a basis, and (b) state the dimension.




2c
a− b
b− 3c
a+ 2b

 : a, b, c ∈ R


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9. Find the dimension of the subspace of all vectors in R3 whose first and third entries are
equal.

12. Find the dimension of the subspace spanned by the given vectors. 1
−2
0

 ,
−34

1

 ,
−86

5

−30
7



13. Determine the dimensions of Nul A and Col A.

A =


1 −6 9 0 −2
0 1 2 −4 5
0 0 0 5 1
0 0 0 0 0



21. The first four Hermite polynomials are 1, 2t,−2+4t2, and−12t+8t3. These polynomials
arise naturally in the study of certain important differential equations in mathematical
physics. Show that the first four Hermite polynomials form a basis for P3.

26. (Optional Extra) Let H be a n-dimensional subspace of an n-dimensional space V .
Show that H = V .

4.6 Rank

3. Assume that the matrix A is row equivalent to B. Without calculations, list rankA and
dimNulA. Then find bases for ColA, RowA, and NulA.

A =


2 −3 6 2 5
−2 3 −3 −3 −4
4 −6 9 5 9
−2 3 3 −4 1

 , B =


2 −3 6 2 5
0 0 3 −1 1
0 0 0 1 3
0 0 0 0 0



5. If a 3× 8 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT .

13. If A is a 7 × 5 matrix, what is the largest possible rank of A? If A is a 5 × 7 matrix,
what is the largest possible rank of A? Explain your answers.

14. If A is a 4× 3 matrix, what is the largest possible dimension of the row space of A? If
A is a 3× 4 matrix, what is the largest possible dimension of the row space of A? Explain.

17. A is an m× n matrix. Mark each statement True or False. Justify each answer.

a. The row space of A is the same as the column space of AT .

b. If B is any echelon form of A, and if B has three nonzero rows,then the first three
rows of A form a basis for RowA.
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c. The dimensions of the row space and the column space of A are the same, even if A
is not square.

d. The sum of the dimensions of the row space and the null space of A equals the
number of rows in A.

e. On a computer, row operations can change the apparent rank of a matrix.

28. (Optional Extra) This Exercise concern an m× n matrix A and what are often called
the fundamental subspaces determined by A. Justify the following equalities:

a. dim RowA+ dim NulA = n Number of columns of A

b. dim ColA+ dim NulAT = m Number of rows of A

4.9 Applications to Markov Chains

3. On any given day, a student is either healthy or ill. Of the students who are healthy
today, 95% will be healthy tomorrow. Of the students who are ill today, 55% will still be
ill tomorrow.

a. What is the stochastic matrix for this situation?

b. Suppose 20% of the students are ill on Monday. What fraction or percentage of the
students are likely to be ill on Tuesday? On Wednesday?

c. If a student is well today, what is the probability that he or she will be well two days
from now?

7. Find the steady-state vector. .7 .1 .1
.2 .8 .2
.1 .1 .7



18. (Optional Extra) Show that every 2×2 stochastic matrix has at least one steady-state

vector. Any such matrix can be written in the form P =

[
1− α β
α 1− β

]
, where α and β

are constants between 0 and 1. (There are two linearly independent steady-state vectors if
α = β = 0. Otherwise, there is only one.)
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