

TMA4115 Calculus 3 Spring 2016

Øving 12

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag

4.2 Second-Order Equations and Systems (page ixiv)

In Exercises 1 and 2, use the substitution v = y' to write each second-order equation as a system of two first-order differential equations (planar systems).

1.
$$y'' + 2y' - 3y = 0$$

2.
$$4y'' + 4y' + y = 0$$

5.7 Application to Differential Equations

1. A particle moving in a planar force field has a position vector \mathbf{x} that satisfies $\mathbf{x}' = A\mathbf{x}$. The 2×2 matrix A has eigenvalues 4 and 2, with corresponding eigenvectors $\mathbf{v}_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Find the position of the particle at time t assuming that $\mathbf{x}(0) = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$.

3. Solve the initial value problem $\mathbf{x}'(t) = A\mathbf{x}(t)$ for $t \geq 0$, with $\mathbf{x}(0) = (3,2)$. Classify the nature of the origin as an attractor, repeller, or saddle point of the dynamic system described by $\mathbf{x}' = A\mathbf{x}$. Find the direction of greatest attraction and/or repulsion. If the origin is a saddle point, sketch typical trajectories.

$$A = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$$

9. Construct the general solution of $\mathbf{x}' = A\mathbf{x}$ involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.

$$A = \begin{bmatrix} -3 & 2\\ -1 & -1 \end{bmatrix}$$

6.1 Inner Product, Length, and Orthogonality

6. Compute

$$\begin{pmatrix} \mathbf{x} \cdot \mathbf{w} \\ \mathbf{x} \cdot \mathbf{x} \end{pmatrix} \mathbf{x}$$
, where, $\mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$

In Exercises 9 and 10, find a unit vector in the direction of the given vector.

9.
$$\begin{bmatrix} -30 \\ 40 \end{bmatrix}$$

10.
$$\begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}$$

Determine which pairs of vectors in Exercises 15 and 16 are orthogonal.

15.
$$\mathbf{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

16.
$$\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$$

26. Let $\mathbf{u} = \begin{bmatrix} 5 \\ -6 \\ 7 \end{bmatrix}$, and let W be the set of all \mathbf{x} in \mathbb{R}^3 such that $\mathbf{u} \cdot \mathbf{x} = 0$. What theorem

in Chapter 4 can be used to show that W is a subspace of \mathbb{R}^3 ? Describe W in geometric language.

29. (Optional Extra) Let $W = \text{Span}\{\mathbf{v}_1, \dots \mathbf{v}_p\}$. Show that if \mathbf{x} is orthogonal to each \mathbf{v}_j , for $1 \leq j \leq p$, the \mathbf{x} is orthogonal to every vector in W.

Extra (Optional Extra) Let $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ -1 \end{bmatrix}$. Find a nonzero linear combination of \mathbf{v} and \mathbf{v} that is extraordal to \mathbf{v} . (Hint: this exercise is very similar to

combination of **u** and **v** that is orthogonal to **w**. (*Hint*: this exercise is very similar to problem 6 of fall 2015 exam)

6.2 Orthogonal Sets

7. Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ us an orthogonal basis for \mathbb{R}^2 . Then express \mathbf{x} as a linear combination of the \mathbf{u} 's.

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$$

11. Compute the orthogonal projection of $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ onto the line through $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ and the origin.

14. Let $\mathbf{y} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$. Write \mathbf{y} as the sum of a vector in Span $\{\mathbf{u}\}$ and a vector orthogonal to \mathbf{u} .

15. Let $\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

- **26.** (Optional Extra) Suppose W is a subspace of \mathbb{R}^n spanned by n nonzero orthogonal vectors. Explain why $W = \mathbb{R}^n$.
- **27.** (Optional Extra) Let U be a square matrix with orthogonal columns. Explain why U is invertible. (Mention the theorems you use).