TMA 4115 Matematikk 3 Lecture for KJ & NANO

Alexander Schmeding

NTNU

20. March 2017

In today's lecture we will...

- learn more about eigenvalues and eigenvectors,
- learn how to compute eigenvalues and eigenvectors.

Eigenvector and eigenvalue

Definition of Eigenvectors and Eigenvalues

A a square matrix. A non-zero vector \overrightarrow{x} is an **eigenvector** (of A) with **eigenvalue** λ if

$$A\overrightarrow{x} = \lambda \overrightarrow{x}$$
 holds for λ .

We note that...

• eigenvectors are non-zero but zero can be an eigenvalue

Exampel: If A is the zero matrix, $A\overrightarrow{x} = \overrightarrow{0} = 0\overrightarrow{x}$.

• \overrightarrow{v} and \overrightarrow{w} eigenvectors for A (with eigenvalue λ), then $\overrightarrow{v} + r \overrightarrow{w}$ is eigenvector with eigenvalue λ