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Recap: The complex exponential function
2nd order differential equations
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Complex functions

A complex function f : U → V , x 7→ f (x) consists of U ⊆ C
(domain), V ⊆ C (codomain) and a rule x 7→ f (x).

Complex polynomials
p : C→ C, p(z) =

∑n
k=0 akzk (complex) polynomial, where

a0, . . . , an ∈ C and n ∈ N .

w ∈ C is a root of p if p(w) = 0. For p(z) = az2 + bz + c we can
find roots by the quadratic formula.
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The complex exponential function

exp: C→ C, exp(x + iy) = ex (cos(y) + i sin(y)) write
ez := exp(z)

Properties of exp for z = x + iy
(a) exp(a + 0i) = ea, (exp for real numbers),
(b) |ez | = ex , arg(ez) = y ,
(c) Re(ez) = ex cos(y) and Im(ez) = ex sin(y),
(d) ez1+z2 = ez1ez2 for z1, z2 ∈ C,
(e) 1

ez = e−z exp(z) = exp(z),

Can use exp to write polar coordinates:

z = r(cos(θ) + i sin(θ)) = reiθ
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We know how to solve the differential equations

y ′(t) = d
dt y(t) = f (y , t)

if the function f is “nice”.

This is a first order differential equation, because it only involves
the first derivative of y .

First order differential equations are “simple”. The (physical) world
is complicated, whence it can not only be described by first order
equations. We need more complicated equations!
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3.1 Newtons second law

Newtons second law
The acceleration a of a body with mass m is proportional to the
net force F via

F = ma (1)

Question: What is the displacement y(t) of the body from a
reference point?

Acceleration a is rate of change of velocity v , i.e.

a = d
dt v = v ′ (2)

Velocity v is rate of change of the displacement, i.e.

v = d
dt y = y ′ (3)

Thus (2) becomes a = y ′′.
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What is the displacement y(t) of the body from a
reference point?

Finally, F depends on time, displacement and velocity, thus

F (t, y , v) = F (t, y , y ′) (using (3))

With Newtons second law (1) obtain

F (t, y , y ′) = my ′′.

This is a second order differential equation since it involves
derivatives of y of up to second order.
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3.2 Definition

A second order differential equation is an equation of the form

d2

dt2 y(t) = f
(

y , d
dt y , t

)
(4)

where f is a given function.

A solution to (4) is a function y which is twice continuously
differentiable and satisfies (4).

Usually we write y ′ = d
dt y(t) and y ′′ = d2

dt2 y(t), thus (4) reads:

y ′′ = f (t, y , y ′) (5)
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3.3 The vibrating spring
We consider a spring suspended from a beam:

0

m x0Attach weight m:
New equilibrium at height x0

Stretch and release the spring
. . . it will move!

m x1

Forces acting on weight in motion:
damping force D(v) (depends on velocity v = x ′),
external force F (t), Restoring force R(x) and gravity mg .
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A model for the position x(t) of the spring

Newtons second law (1) for the spring

ma = total force acting on the weight
= R(x) + mg + D(v) + F (t)

(6)

Velocity v = x ′ and acceleration a = v ′ = x ′′, thus (6) becomes

mx ′′ = R(x) + mg + D(x ′) + F (t). (7)

Hooke’s law (valid for some springs)
R(x) = −kx for k > 0 constant and small x .

Assuming Hooke’s law, (7) becomes

x ′′ = − k
m x + g + D(x ′) + F (t)

m . (8)
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Is there a solution for every 2nd order differential equation?

3.4 Theorem
Let p, q and g be continuous functions on the interval (α, β). Fix
t0 ∈ (α, β) and y0, y1 ∈ R. There is a unique function
y : (α, β)→ R which solves{

y ′′ + p(t)y ′ + q(t)y = g(t), for t ∈ (α, β)
y(t0) = y0, y ′(t0) = y1

(9)

3.5 Remark
The solution of (9) is defined on all of (α, β)
We need y(t0) = y0, y ′(t0) = y1 to get a unique solution.

Open Problem: How to find a solution?
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