TMA 4115 Matematikk 3 Lecture 6 for FYMA

Alexander Schmeding

NTNU

26. January 2017

Topics in todays lecture...

Recap: Differential equations with constant coefficients Inhomogeneous differential equations The Method of undetermined coefficients If $p,q \in \mathbb{R}$ constant and g a function, we call

$$y'' + py' + qy = g(t) \qquad (\star)$$

(linear inhomogeneous) differential equation with constant coefficients.

Associated homogeneous equation to (\star)

$$y'' + py' + qy = 0 \qquad (\star\star)$$

Last lecture: How to solve homogeneous equations

- Compute characteristic polynomial $\lambda^2 + p\lambda + q$ for (*)
- Find the roots of the polynomial (characteristic roots)
- Have three cases depending on roots

Solutions for equations with constant coefficients

Case 1 $p^2 - 4q > 0$, i.e. two distinct, real roots λ_1 and λ_2 . Fundamental set of solutions for (*):

$$y_1(t) = e^{\lambda_1 t}$$
 $y_2(t) = e^{\lambda_2 t}$

Case 2 $p^2 - 4q < 0$, i.e. two distinct, complex roots $\lambda_1 = a + ib$ and $\overline{\lambda_1}$. Fundamental set of (real valued) solutions for (*):

$$y_1(t) = e^{at}\cos(bt)$$
 $y_2(t) = e^{at}\sin(bt)$

Case 3 $p^2 - 4q = 0$, i.e. one repeated real root λ_1 . Fundamental set of solutions for (*):

$$y_1(t) = e^{\lambda_1 t}, \quad y_2(t) = t e^{\lambda_1 t}$$

Harmonic motion

$$y'' + 2cy' + \omega_0^2 y = f(t)$$
 harmonic motion (1)

with $c, \omega_0 \in \mathbb{R}$. We call c dampening parameter ω_0 natural frequency Roots of $\lambda^2 + 2c\lambda + \omega_0^2$ are $\lambda_{1,2} = -c \pm \sqrt{c^2 - \omega_0^2}$.

Example: The spring equation (Chapter 3)

$$my'' = -ky - \mu y' + F(t) \qquad k, \mu > 0$$

or equivalently

$$y'' + \frac{\mu}{m}y' + \frac{k}{m}y = \frac{F(t)}{m}$$
(2)

Consider now $\mu = 0 = F(t)$ (simple case)

Simple Harmonic motion (i.e. $\mu = 0 = F(t)$)

Have $\lambda^2 + \frac{k}{m} = 0$ with complex roots $\pm i\sqrt{\frac{k}{m}} = \pm i\omega_0$. General (real) solution of (2) is

$$egin{aligned} y(t) &= Ae^{0t}\cos(\omega_0 t) + Be^{0t}\sin(\omega_0 t) \ &= A\cos(\omega_0 t) + B\sin(\omega_0 t) \qquad A, B \in \mathbb{R} \end{aligned}$$

Inhomogeneous equations

A solution y_p to y'' + p(t)y' + q(t)y = g(t) is called *particular* solution.

5.1 Theorem

Let $y_p(t)$ be a particular solution and y_1, y_2 a fundamental system for the associated homogeneous equation

$$y'' + py' + qy = 0.$$

Then the general solution to the inhomogeneous equation is

$$y(t)=y_{
ho}(t)+Ay_1(t)+By_2(t) \quad A,B\in \mathbb{R}(ext{or }\mathbb{C}).$$

Solution to y'' + p(t)y' + q(t)y = g(t)

Problem: How to find a particular solution?

We now introduce the **method of undetermined coefficients**.

Idea: Guess a particular solution based on the forcing term.

Guideline for the method

If the form of the forcing term f replicates under differentiation, look for a solution with the same form.

Overwiew: The method of undetermined coefficients

Forcing term <i>f</i> (<i>t</i>)	Trial solution	Comment
e ^{rt}	ae ^{rt}	
$\cos(\omega t)$ or $\sin(\omega t)$	$a\cos(\omega t) + b\sin(\omega t)$	
P(t) Polynomial	p(t) Polynomial	P(t) and $p(t)$ have same degree
Example: t^2	$at^2 + bt + c$	-

Problem: If the trial solution is a solution of the homogeneous equation the above method does not work!Solution: Try multiplying the trial solution with *t*, if that does not work multiply by *t* again.