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Topics in todays lecture...
Recap: Differential equations with constant coefficients
Inhomogeneous differential equations
The Method of undetermined coefficients
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If p, q ∈ R constant and g a function, we call

y ′′ + py ′ + qy = g(t) (?)

(linear inhomogeneous) differential equation with constant
coefficients.

Associated homogeneous equation to (?)

y ′′ + py ′ + qy = 0 (??)

Last lecture: How to solve homogeneous equations
Compute characteristic polynomial λ2 + pλ+ q for (?)
Find the roots of the polynomial (characteristic roots)
Have three cases depending on roots
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Solutions for equations with constant coefficients

Case 1 p2 − 4q > 0, i.e. two distinct, real roots λ1 and λ2.
Fundamental set of solutions for (?):

y1(t) = eλ1t y2(t) = eλ2t

Case 2 p2 − 4q < 0, i.e. two distinct, complex roots λ1 = a + ib and
λ1. Fundamental set of (real valued) solutions for (?):

y1(t) = eat cos(bt) y2(t) = eat sin(bt)

Case 3 p2 − 4q = 0, i.e. one repeated real root λ1.
Fundamental set of solutions for (?):

y1(t) = eλ1t , y2(t) = teλ1t
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Harmonic motion

y ′′ + 2cy ′ + ω2
0y = f (t) harmonic motion (1)

with c, ω0 ∈ R. We call
c dampening parameter
ω0 natural frequency

Roots of λ2 + 2cλ+ ω2
0 are λ1,2 = −c ±

√
c2 − ω2

0.

Example: The spring equation (Chapter 3)

my ′′ = −ky − µy ′ + F (t) k, µ > 0

or equivalently
y ′′ + µ

my ′ + k
my = F (t)

m (2)

Consider now µ = 0 = F (t) (simple case)
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Simple Harmonic motion (i.e. µ = 0 = F (t))

Have λ2 + k
m = 0 with complex roots ±i

√
k
m = ±iω0. General

(real) solution of (2) is

y(t) = Ae0t cos(ω0t) + Be0t sin(ω0t)
= A cos(ω0t) + B sin(ω0t) A,B ∈ R

plotted for
A,B = 1,
ω0 = 4

No Damping or forcing: Solution oscillates with natural frequency ω0 =
√

k
m
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Inhomogeneous equations

A solution yp to y ′′ + p(t)y ′ + q(t)y = g(t) is called particular
solution.

5.1 Theorem
Let yp(t) be a particular solution and y1, y2 a fundamental system
for the associated homogeneous equation

y ′′ + py ′ + qy = 0.

Then the general solution to the inhomogeneous equation is

y(t) = yp(t) + Ay1(t) + By2(t) A,B ∈ R(or C).
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Solution to y ′′ + p(t)y ′ + q(t)y = g(t)

Inhomogeneous eq.
y ′′ + p(t)y + q(t)y = g(t)

Particular solution yp

Homogeneous eq.
y ′′ + p(t)y + q(t)y = 0

General solution
(homogeneous eq.)

Ay1 + By2

General solution
(inhomogeneous eq.)

yp + Ay1 + By2

Step 1 Step 2

?
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Problem: How to find a particular solution?

We now introduce the method of undetermined coefficients.

Idea: Guess a particular solution based on the forcing term.

Guideline for the method
If the form of the forcing term f replicates under differentiation,
look for a solution with the same form.
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Overwiew: The method of undetermined coefficients

Forcing term f (t) Trial solution Comment
ert aert

cos(ωt) or sin(ωt) a cos(ωt) + b sin(ωt)

P(t) Polynomial p(t) Polynomial P(t) and p(t) have
same degree

Example: t2 at2 + bt + c

Problem: If the trial solution is a solution of the homogeneous
equation the above method does not work!

Solution: Try multiplying the trial solution with t,
if that does not work multiply by t again.
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