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In today's lecture we will discuss
@ again least square problems,
@ symmetric and orthogonal matrices,

@ the Spectral Theorem for symmetric matrices



Least square problems

Least square solutions

—\
A mx nmatrix, b € R™. ¥ €R"is called least square solution
—\
of AX = b if

b —AY|| <[ — AX|, forall X € R".

Note: ¥ is a least square solution if and only if
o AY = projcoa)( b)
o It solves the normal equation ATAX = ATp

For every linear system there is a least square solution and it is the
best (approximate) solution.



Least square problems

Spring 2011 Problem 5

1 3 0 1 1

Let A= | 2 1 5 —-3| and ? = |7|. Find the nearest
-1 -1 -2 1 3

point in Col(A) to Y

Avoid GLam—Schmidt and compute a least square solution Y to
AX = the_n\earest point is then AY . Normal equation:
ATAX = AT yields

6 6 12 —6
6 11 7 -1
12 7 29 -17
-6 -1 —-17 11

ATA =

Can we simplify the problem so that we do not need AT A?



Least square problems

Revisiting an example

Idea: Col(A) is important, but A is not!
Use the method with simpler matrix B with Col(B) =Col(A).

1 3 1 3
A basis for Col(A)is | 2 | and | 1 |.SetB=|2 1 | and
-1 -1 -1 -1
compute:
6 6 — 12
Tp_ T _

Solving BTBX = BT? yields the least square solution l_i]



Least square problems

Revisiting an example

The nearest point to b in Col(A) =Col(B) is

If we know a basis of Col(A), we can replace A by a simpler matrix!

Can compute nearest points in a subspace by solving least square
problems.
— avoid Gram-Schmidt (= messy computation).




Symmetric matrices and quadratic forms

An observation

In setting up the normal equation we computed matrices of the
form AT A. Here are some examples:

6 6 12 —6
17 1 4 17 6 11 7 -1
1 5|’ 17 81|’ 12 7 29 -—-17
-6 -1 —-17 11

These matrices have an interesting structure:
Their transpose coincides with the matrix!!

These special matrices are called symmetric and we will now
investigate them.

!By the rules of the transpose (ATA)T = AT(AT)" = ATA.



Symmetric matrices and quadratic forms

Spectral Theorem for symmetric matrices

A symmetric n X n matrix, then the following holds:
(a) A has n real eigenvalues counting multiplicities?

(b) dim Ey equals the multiplicity of the eigenvalue A,
Recall: E\, = eigenspace to eigenvalue \

(c) A\ # u eigenvalues of A, then E) C Elf,
(d) Ais orthogonally diagonalisable.

“Muiltiplicity of eigenvalue: Multiplicity of the root of the characteristic

polynomial.
Example: If (A —1)"(X\ + 3) is the characteristic polynomial, A =1 is an
eigenvalue of multiplicity n, A = —3 is eigenvalue of multiplicity 1.

Spectrum (of a matrix) = set of eigenvalues.



Symmetric matrices and quadratic forms

A = PDP~! with P = [?1 U\,,} orthogonal, D a diagonal
matrix (diagonal entries A1,..., A, the eigenvalues of A.) Since
P~1 = PT we have

A 07 [a!
A:PDPT:{ﬁl ﬁn} 1 . .1
0 Al LT

uf

= [)\1 u1 )\nun} ﬁT
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