TMA 4115 Matematikk 3 Lecture for KJ & NANO

Alexander Schmeding

NTNU

20. April 2017

In today's lecture we will discuss

- again least square problems,
- symmetric and orthogonal matrices,
- the Spectral Theorem for symmetric matrices

Least square solutions

A $m \times n$ matrix, $\overrightarrow{b} \in \mathbb{R}^m$. $\overrightarrow{y} \in \mathbb{R}^n$ is called **least square solution** of $A\overrightarrow{x} = \overrightarrow{b}$ if

$$\|\overrightarrow{b} - A\overrightarrow{\mathcal{Y}}\| \leq \|\overrightarrow{b} - A\overrightarrow{x}\|, \quad \text{for all } \overrightarrow{x} \in \mathbb{R}^n.$$

Note: \overrightarrow{y} is a least square solution if and only if • $A\overrightarrow{y} = \operatorname{proj}_{\operatorname{Col}(A)}(\overrightarrow{b})$

• It solves the normal equation $A^T A \overrightarrow{x} = A^T \overrightarrow{b}$

For every linear system there is a least square solution and it is the best (approximate) solution.

Spring 2011 Problem 5

Let
$$A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1 \end{bmatrix}$$
 and $\overrightarrow{b} = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix}$. Find the nearest point in Col(A) to \overrightarrow{b} .

Avoid Gram-Schmidt and compute a least square solution \overrightarrow{y} to $A\overrightarrow{x} = \overrightarrow{b}$ the nearest point is then $A\overrightarrow{y}$. Normal equation: $A^T A\overrightarrow{x} = A^T \overrightarrow{b}$ yields

$$A^T A = egin{bmatrix} 6 & 6 & 12 & -6 \ 6 & 11 & 7 & -1 \ 12 & 7 & 29 & -17 \ -6 & -1 & -17 & 11 \end{bmatrix}.$$

Can we simplify the problem so that we do not need $A^T A$?

Revisiting an example

Idea: Col(A) is important, but A is not! Use the method with simpler matrix B with Col(B) = Col(A).

A basis for Col(A) is
$$\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} 3\\ 1\\ -1 \end{bmatrix}$. Set $B = \begin{bmatrix} 1 & 3\\ 2 & 1\\ -1 & -1 \end{bmatrix}$ and compute:

$$B^{\mathsf{T}}B = \begin{bmatrix} 6 & 6 \\ 6 & 5 \end{bmatrix}, B^{\mathsf{T}}\overrightarrow{b} = \begin{bmatrix} 12 \\ 7 \end{bmatrix}$$

Solving $B^T B \overrightarrow{x} = B^T \overrightarrow{b}$ yields the least square solution $\begin{vmatrix} 3 \\ -1 \end{vmatrix}$

Revisiting an example

The nearest point to \overrightarrow{b} in $\operatorname{Col}(A) = \operatorname{Col}(B)$ is

$$B\begin{bmatrix}3\\-1\end{bmatrix} = \begin{bmatrix}0\\5\\-2\end{bmatrix}$$

If we know a basis of Col(A), we can replace A by a simpler matrix!

Remark

Can compute nearest points in a subspace by solving least square problems.

 \rightarrow avoid Gram-Schmidt (= messy computation).

An observation

In setting up the normal equation we computed matrices of the form $A^T A$. Here are some examples:

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}, \begin{bmatrix} 4 & 17 \\ 17 & 81 \end{bmatrix}, \begin{bmatrix} 6 & 6 & 12 & -6 \\ 6 & 11 & 7 & -1 \\ 12 & 7 & 29 & -17 \\ -6 & -1 & -17 & 11 \end{bmatrix}$$

These matrices have an interesting structure: Their transpose coincides with the matrix!¹

These special matrices are called **symmetric** and we will now investigate them.

¹By the rules of the transpose $(A^T A)^T = A^T (A^T)^T = A^T A$.

Spectral Theorem for symmetric matrices

A symmetric $n \times n$ matrix, then the following holds:

- (a) A has n real eigenvalues counting multiplicities^a
- (b) dim E_{λ} equals the multiplicity of the eigenvalue λ , **Recall**: E_{λ} = eigenspace to eigenvalue λ

(c)
$$\lambda \neq \mu$$
 eigenvalues of A , then $E_{\lambda} \subseteq E_{\mu}^{\perp}$,

(d) A is orthogonally diagonalisable.

^a**Multiplicity of eigenvalue**: Multiplicity of the root of the characteristic polynomial.

Example: If $(\lambda - 1)^n(\lambda + 3)$ is the characteristic polynomial, $\lambda = 1$ is an eigenvalue of multiplicity *n*, $\lambda = -3$ is eigenvalue of multiplicity 1.

Spectrum (of a matrix) = set of eigenvalues.

\ **-**

$$A = PDP^{-1}$$
 with $P = \begin{bmatrix} \overrightarrow{u}_1 & \dots & \overrightarrow{u}_n \end{bmatrix}$ orthogonal, D a diagonal matrix (diagonal entries $\lambda_1, \dots, \lambda_n$ the eigenvalues of A .) Since $P^{-1} = P^T$ we have

$$A = PDP^{T} = \begin{bmatrix} \overrightarrow{u}_{1} & \dots & \overrightarrow{u}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{bmatrix} \begin{bmatrix} \overrightarrow{u}_{1}^{T} \\ \vdots \\ & \overrightarrow{u}_{n}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_{1} \overrightarrow{u}_{1} & \dots & \lambda_{n} \overrightarrow{u}_{n} \end{bmatrix} \begin{bmatrix} \overrightarrow{u}_{1}^{T} \\ \vdots \\ & \overrightarrow{u}_{n}^{T} \end{bmatrix}$$

We obtain the so called **spectral decomposition** of A

$$A = \lambda_1 \overrightarrow{u}_1 \overrightarrow{u}_1^T + \lambda_2 \overrightarrow{u}_2 \overrightarrow{u}_1^T + \dots + \lambda_n \overrightarrow{u}_n \overrightarrow{u}_n^T$$

Note: $(\overrightarrow{u}_k \overrightarrow{u}_k^T) \overrightarrow{x} = \text{proj}_{\text{span}\{\overrightarrow{u}_k\}}(x)$