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In today’s lecture we will discuss
again least square problems,
symmetric and orthogonal matrices,
the Spectral Theorem for symmetric matrices
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Least square solutions
A m× n matrix, ⇀b ∈ Rm. ⇀y ∈ Rn is called least square solution
of A⇀x = ⇀b if

‖⇀b − A⇀y ‖ ≤ ‖⇀b − A⇀x ‖, for all ⇀x ∈ Rn.

Note: ⇀y is a least square solution if and only if
A⇀y = projCol(A)(

⇀b )
It solves the normal equation AT A⇀x = AT⇀b

For every linear system there is a least square solution and it is the
best (approximate) solution.
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Spring 2011 Problem 5

Let A =

 1 3 0 1
2 1 5 −3
−1 −1 −2 1

 and ⇀b =

1
7
3

. Find the nearest

point in Col(A) to ⇀b .

Avoid Gram-Schmidt and compute a least square solution ⇀y to
A⇀x = ⇀b the nearest point is then A⇀y . Normal equation:
AT A⇀x = AT⇀b yields

AT A =


6 6 12 −6
6 11 7 −1
12 7 29 −17
−6 −1 −17 11

 .
Can we simplify the problem so that we do not need AT A?
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Revisiting an example

Idea: Col(A) is important, but A is not!
Use the method with simpler matrix B with Col(B) =Col(A).

A basis for Col(A) is

 1
2
−1

 and

 3
1
−1

. Set B =

 1 3
2 1
−1 −1

 and

compute:

BT B =
[
6 6
6 5

]
,BT⇀b =

[
12
7

]

Solving BT B⇀x = BT⇀b yields the least square solution
[

3
−1

]
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Revisiting an example

The nearest point to ⇀b in Col(A) =Col(B) is

B
[

3
−1

]
=

 0
5
−2


If we know a basis of Col(A), we can replace A by a simpler matrix!

Remark
Can compute nearest points in a subspace by solving least square
problems.
→ avoid Gram-Schmidt (= messy computation).
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An observation

In setting up the normal equation we computed matrices of the
form AT A. Here are some examples:

[
17 1
1 5

]
,

[
4 17
17 81

]
,


6 6 12 −6
6 11 7 −1
12 7 29 −17
−6 −1 −17 11


These matrices have an interesting structure:
Their transpose coincides with the matrix!1

These special matrices are called symmetric and we will now
investigate them.

1By the rules of the transpose (AT A)T = AT (AT )T = AT A.
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Spectral Theorem for symmetric matrices
A symmetric n × n matrix, then the following holds:
(a) A has n real eigenvalues counting multiplicitiesa

(b) dim Eλ equals the multiplicity of the eigenvalue λ,
Recall: Eλ = eigenspace to eigenvalue λ

(c) λ 6= µ eigenvalues of A, then Eλ ⊆ E⊥µ ,
(d) A is orthogonally diagonalisable.

aMultiplicity of eigenvalue: Multiplicity of the root of the characteristic
polynomial.
Example: If (λ − 1)n(λ + 3) is the characteristic polynomial, λ = 1 is an
eigenvalue of multiplicity n, λ = −3 is eigenvalue of multiplicity 1.

Spectrum (of a matrix) = set of eigenvalues.
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A = PDP−1 with P =
[
⇀u 1 . . . ⇀u n

]
orthogonal, D a diagonal

matrix (diagonal entries λ1, . . . , λn the eigenvalues of A.) Since
P−1 = PT we have

A = PDPT =
[
⇀u 1 . . . ⇀u n

] λ1 0
. . .

0 λn



⇀u T

1
...

⇀u T
n



=
[
λ1
⇀u 1 . . . λn

⇀u n
] 
⇀u T

1
...

⇀u T
n


We obtain the so called spectral decomposition of A

A = λ1
⇀u 1

⇀u T
1 + λ2

⇀u 2
⇀u T

1 + · · ·+ λn
⇀u n

⇀u T
n

Note: (⇀u k
⇀u T

k )⇀x = projspan{⇀u k}(x)
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