TMA 4115 Matematikk 3 Lecture for KJ & NANO

Alexander Schmeding

NTNU

23. March 2017

In today's lecture we will...

- Recap: Similarity of matrices
- use similarity to relate matrices to diagonal matrices
- complex eigenvalues and eigenvectors

Similarity of matrices

Similarity of matrices A and B

A is **similar** to B if there is an invertible matrix P with

$$PAP^{-1} = B$$
 (or equivalently $A = P^{-1}BP$)

Recall that similar matrices have the same characteristic polynomial (hence the same eigenvalues).

•
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ are not similar.
• $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix}$ are similar, since
 $C = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$

We compute

- eigenvalues via the characteristic polynomial det $(A \lambda I)$.
- eigenvectors via $(A \lambda I) \overrightarrow{x} = \overrightarrow{0}$ (for λ eigenvalue!)

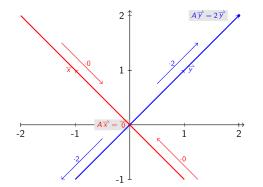
Example: Find eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Calculate the roots of the characteristic polynomial

$$\det(A - \lambda I) = (1 - \lambda)^2 - 1 = \lambda^2 - 2\lambda = (0 - \lambda)(2 - \lambda).$$

Roots of the characteristic polynomial = eigenvalues. $\lambda = 0$ and $\lambda = 2$.

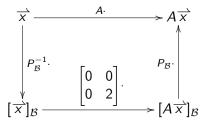
Calculate eigenvectors for $\lambda = 0$ and $\lambda = 2$ via Gaussian elimination, i.e. find a non trivial solution of $(A - 0I)\vec{x} = \vec{0}$ and $(A - 2I)\vec{y} = \vec{0}$. For example $\vec{x} = \begin{bmatrix} -1\\1 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 1\\1 \end{bmatrix}$ Along the eigenvectors the matrix acts by scalar multiplication:



Observe that the eigenvectors even form a basis \mathcal{B} for \mathbb{R}^2 !

Observation: Matrix action in \mathcal{B} coordinates

Recall \mathcal{B} -coordinates $[\overrightarrow{x}]_{\mathcal{B}}$, have invertible linear map (\sim matrix) $P_{\mathcal{B}}$ with $P_{\mathcal{B}}[\overrightarrow{x}]_{\mathcal{B}} = \overrightarrow{x}$. Then



Question:

Can we "transform" (all?) square matrices to diagonal matrices?

A a $n \times n$ -matrix. Find a similar diagonal matrix (if possible).

- 1. Compute the eigenvalues of A,
- Compute the eigenvectors associated to the eigenvalues. (Gaussian elimination!)
- Check if we have n linear independent eigenvectors. If not: A is not diagonalisable!
 Hint: Eigenvectors of different eigenvalues are linearly independent.
- 4. Write eigenvectors as columns in a matrix P
- 5. Construct a diagonal matrix D whose diagonal entries are the eigenvalues corresponding to the columns in P
- 6. Then $A = PDP^{-1}$