TMA 4115 Matematikk 3 Lecture 2 for KJ & NANO

Alexander Schmeding

NTNU

12. January 2017

Complex numbers

a+ib (may also write a+bi) is a complex number where $a,b\in\mathbb{R}$ and i the imaginary unit $(i^2=-1)$

Representations of a complex number w:

- a + ib normal form (or standard form), here Re(w) = a and Im(w) = b
- (a, b) cartesian coordinates for the complex plane
- (r, θ) polar coordinates (only for $w \neq 0$).

How to compute (r, θ) from w = a + ib?

If $-\pi < \theta \le \pi$ then $\theta = \operatorname{Arg}(w)$ "principal argument".

How to compute (r, θ) from w = a + ib, II

We know

$$r=|w|=\sqrt{a^2+b^2}$$
 $an(heta)= an(rg(a+bi))=rac{b}{a}$ (if $a
eq 0$)

Warning: Your calculator can compute $tan^{-1}(\frac{b}{a})$ but:

$$\tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{-b}{-a}\right)$$

Problem: Same number, but the angle should be different!

Solution:

Use the two variable arctan function (called atan2) or use tan⁻¹ and the formula for atan2 on Wikipedia http://en.wikipedia.org/wiki/Atan2

Recovering a + ib (or (a, b)) from (r, θ) .

Given $w = (r, \theta)$ and $z = (s, \psi)$ what is $w \cdot z$?

Rules for the multiplication of $w,z,v\in\mathbb{C}$

$$w \cdot z = z \cdot w$$
 and $w \cdot (z \cdot v) = (w \cdot z) \cdot v$ $|w \cdot z| = |w| \cdot |z|$