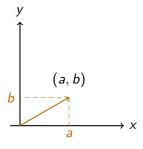
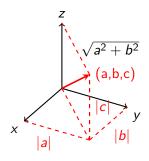
TMA 4115 Matematikk 3 Lecture for KJ & NANO

Alexander Schmeding

NTNU


30. March 2017

In today's lecture we will ...

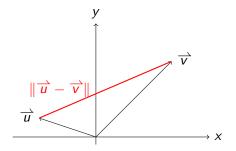

- explore the geometry of \mathbb{R}^n ,
- define the length of vectors,
- investigate when vectors are orthogonal

Geometry of \mathbb{R}^n : Length of vectors

Length in 2d:

Length in 3d:

Pythagoras:

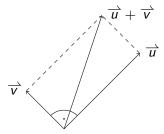

length of $\begin{bmatrix} a \\ b \end{bmatrix}$ is $\sqrt{a^2 + b^2}$

Pythagoras (2 times!):

length of $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is $\sqrt{a^2 + b^2 + c^2}$

Distance between two vectors

How can we measure the distance between points?


Distance between vectors

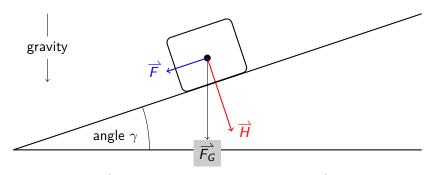
$$\operatorname{dist}(\overrightarrow{u}, \overrightarrow{v}) = \|\overrightarrow{u} - \overrightarrow{v}\|$$

Note:
$$\|\overrightarrow{u} - \overrightarrow{v}\| = \|\overrightarrow{v} - \overrightarrow{u}\|$$
.

What does orthogonal mean?

If vectors \overrightarrow{u} and \overrightarrow{v} in \mathbb{R}^2 meet in a right angle, they are **perpendicular** (or **orthogonal**):

Pythagoras theorem


 $\|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2$ Comparing both sides, the equation holds if and only if:

$$\overrightarrow{u}\cdot\overrightarrow{v}=0$$

Idea: Use this to define orthogonal vectors in general settings.

Example: Splitting forces in physics

Say we know the weight of a block on a slope:

Can compute \overrightarrow{F}_G from the weight but we want: \overrightarrow{F} , the force acting on the block in the direction of the slope.

Note: \overrightarrow{F} and \overrightarrow{H} are orthogonal! \rightarrow Idea: split \overrightarrow{F}_G in orthogonal components