Kapittel 11.4

PROBLEM SET 113

1-9| EVEN AND ODD FUNCTIONS 12. f(x) = 2xix N <x<l1

Are the following functions even, odd, or neither even nor [ = i —wl2 < x < =2
odd? - 13. f(x) = ‘l.— i s .
1. |x|, x® sin nx, x + x2, e~ Inx, x cosh x - e 3
2. sin (x2), sin® x, x sinh x, [x%, ™, xe®, tan 2x, x/(1 + x?) 14. f(x) = {We_r L

Are the following functions, which are assumed to be me® 0 <x<aw
periodic of period 277, even, odd, or neither even nor odd? 2 if 2 <x<0

3f) =x (—m<x<m 15. f(x) = {

4, f(x) = x2 (—m/2 < x < 3m/2) 0 if 0 <x<2

5 f(x) =e® (—m<x<m 1 =3 if —2<x<2

6. f(x) = x®sinx (—7m<x<m 16.f(x)={ " 3 eped p =28
7. f@) = alx| —x® (—m<x<m ! *

8. f=1—x+x*—-x" (—7<x<m 8

o 5= (L + 23 if -7 < x < 0, £ = (L + 57 HALF-RANGE EXPANSIONS

Find (a) the Fourier cosine series, (b) the Fourier sins
Sketch f(x) and its two periodic extensions. (Show
10. PROJECT. Even and Odd Functions. (a) Are the details of your work.)

following expressions even or odd? Sums and products 17. fx) =1 (0<x<2)

of even functions and.of odd functions. Products of 18. f) =x (0 <x< 1

even times odd functions. Absolute values of odd

fonctions. () + f(—x) and f(x) — f(—=) for arbitrary 1+ f@) =2 7% (O <x < 2)

fo<x<m

0 0<x<2)
f@). 20. f(x) = {
(b) Write €, 1/(1 — x), sin (x + k), cosh (x + k) as (2 <x<4)
sums of an even and an odd function. 1 0<x<1)
(c) Find all functions that are both even and odd. 21. f(x) = {
(d) Is cos®x even or odd? sin®x? Find the Fourier (I<x<2)
series of these functions. Do you recognize familiar x (0 <x < 7/2)
identities? 22. f(x) = {77/2 (@2 < x < )
FOURIER SERIES OF EVEN AND ODD 23. f(x) =x (0 <x <L)
FUNCTIONS 24, f(x) = x> (0<x<L)
Is the given function even or odd? Find its Fourier series. 5. fx) =7 —x (O0<x<m
Sketch or graph the function and some partial sums. (Show
the details of your work.) 26. Tllustrate the formulas in the proof of Theorem 1 witk
1. f)y =7 — x| (—7<x<m) examples. Prove the formulas.

11.4 Complex Fourier Series. Optional

In this optional section we show that the Fourier series

(1) f(x) = ag + > (ay, cos nx + b, sin nx)

n=1

can be written in complex form, which sometimes simplifies calculations (see Example 1.
on page 498). This complex form can be obtained because in complex, the exponential
function ¢ and cos ¢ and sin  are related by the basic Euler formula (see (11) in Sec. 2.2)

) et =cost + isint. Thus e~® = cost— isint




}_i: 7.4 Complex Fourier Series. Optional 497

Conversely, by adding and subtracting these two formulas, we obtain

Loa —it ; 1 —it
3) (@ cost= —(" + e, (b) sint= —(" —e™™).
2 2i
From (3), using 1/i = —i in sin ¢ and setting 7 = nx in both formulas, we get
. 1 ; . 1 : )
a,, cos nx + b, sinnx = 3 A (€™ + 7)) + 2% b, (™ — ™™
i

) 1 )
= — (a, — iby)e™ + 3 (a, + ibye .

We insert this into (1). Writing ag = Co, Ya, — iby) = Cps and  3(a, + iby) = ky,
we get from (1) )

@) FO) = co + X (o™ + kne™™).

n=1

The coefficients ¢y, Cg, * * +, and ky, kg, * - - are obtained from (6b), (6¢) in Sec. 11.1 and
then (2) above with 7 = nx,

_l( _‘b —_I_JJT( s d_ljﬂ- )—Wmdx
Cp = ds—ulb)i= o _ﬂf x)(cos nx — i sin nx) dx = Yo _Wf(xe

2
€))

1 1 (7 | — )
k, = 2 (a, + ib,) = = j_wf(x)(cos nx + i sin nx) dx = T j_ﬂf(x)emx dx.

Finally, we can combine (5) into a single formula by the trick of writing k,, = ¢_,,. Then
@), (5), and ¢y = ag in (6a) of Sec. 11.1 give (summation from —ool)

="

(6)
1 )
o= o= [ f@ed,  m=0,%1220
Am

This is the so-called complex form of the Fourier series or, more briefly, the complex
Fourier series, of f(x). The ¢,, are called the complex Fourier coefficients of f(x).
For a function of period 2L our reasoning gives the complex Fourier series

[ee]

flx) = 2 Cneinmc/L’
n=-—00

@)
e _
tn ShET f_Lf(x)e—mﬂ/L dx, n=0,*1, %2, -.



498 CHAP. 11 Fourier Series, Integrals, and Transforms

EXAMPLE 1 Complex Fourier Series

Find the complex Fourier series of fxy=eif —m<x<m and f(x + 2m) = f(x) and obtain from it the usual
Fourier series.

Solution. Since sin nm = 0 for integer n, we have
1T = cos par + i sinnar = cosna = (—1)".

With this we obtain from (6) by integration

. = L " exe—i'mc dx = _1_ 1 ex—inz i — 1 1
"2 J_ 27 1 —in g 2 LR

(€™ — e~ (=™

On the right,

1 1+ in 1 +in

T - d—ind +in) 1+

and e™ — e 7 = 2sinh

Hence the complex Fourier series is

sinhw & 1+in
) et = > ot 3 & (—m<x<m.
T i 1+n
From this let us derive the real Fourier series. Using (2) with ¢ = nx and i2 = —1, we have in (8)

1+ in)ei"x = (1 + in)(cos nx + i sinnx) = (cosnx — n sin nx) + i(n cos nx + sin nx).

Now (8) also has a corresponding term with —n instead of n. Since cos (—nx) = cos nx and
sin (—nx) = —sin nx, we obtain in this term

a - in)e‘mx = (1 — in)(cos nx — i sinnx) = (cosnx — n sin nx) — i(n cos nx + sin nx).
If we add these two expressions, the imaginary parts cancel. Hence their sum is
2(cos nx — n sin nx), n=12,+""
For n = 0 we get 1 (not 2) because there is only one term. Hence the real Fourier series is

© © ZSinhwl:l
e = —

1 1
3 T+—12 (cosx — sinx) + W (cos 2x — 2 sin2x) — + }

ks

In Fig. 270 the poor approximation near the jumps at = is a case of the Gibbs phenomenon (see CAS
Experiment 20 in Problem Set 11.2).
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Fig. 270. Partial sum of (9), terms from n = 0 to 50




