analyse

Oppgavene er hentet fra Kapittel 13 i Erwin Kreyszigs "Advanced Engineering Mathematics", 10. utgave.

1 If the product of two complex numbers is zero, show that at least one of the factors must be zero.

2 Let $z=x+i y$. Showing details, find, in terms of x and y :
a) $\operatorname{Im}(1 / z)$,
b) $\operatorname{Im}\left(1 / z^{2}\right)$.

3 Represent in polar form and graph in the complex plane. Show the details.

$$
\frac{7+4 i}{3-2 i} .
$$

4 Find and graph all the roots in the complex plane.

$$
\sqrt[3]{1-i}
$$

5 Solve and graph the solutions. Show details.

$$
z^{2}-(6-2 i) z+17-6 i=0
$$

06 Prove $|\operatorname{Re}(z)| \leq|z|,|\operatorname{Im}(z)| \leq|z|$.

7 Determine and sketch or graph the sets in the complex plane given by:
a)

$$
\frac{\pi}{2}<|z-1+2 i|<\pi
$$

b)

$$
\operatorname{Re}\left(\frac{1}{z}\right)<1
$$

8 Find out, and give reason, whether $f(z)$ is continuous at $z=0$ if $f(0)=0$ and for $z \neq 0$ the function f is equal to:

$$
\frac{\operatorname{Re}(z)}{1-|z|}
$$

9 Find the value of the derivative of $\left(i z^{3}+3 z^{2}\right)^{3}$ at $2 i$.

10 Show that $f(z)=\operatorname{Re}(z)=x$ is not differentiable at any z. Can you find other such functions?

11 Is the following function analytic?

$$
f(z)=-\frac{i}{z^{4}}
$$

12 Is the following function harmonic? If your answer is yes, find a corresponding analytic function $f(z)=u(x, y)+i v(x, y)$.

$$
v(x, y)=e^{-x} \sin (2 y) .
$$

13 Determine a and b so that $u(x, y)=a x^{3}+b x y$ is harmonic and find a harmonic conjugate.

14 Find all solutions and graph some of them in the complex plane.

$$
e^{z}=4+3 i .
$$

15 Find all solutions.

$$
\sin (z)=100 .
$$

16 Find $\operatorname{Ln}(z)$ when $z=8-8 i$.

17 Find the principal value of $(1+i)^{1-i}$. Show details.

