

Forkurs i kompleks analyse

Høst 2014

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Øving 2

Oppgavene er hentet fra Kapittel 14 i Erwin Kreyszigs "Advanced Engineering Mathematics", 10. utgave.

- 1 Integrate by the first method or state why is does not apply and use the second method. Show the details.
 - a) C is the parabola $y = 1 + \frac{1}{2}(x-1)^2$ from 1+i to 3+3i and

$$\int_C \operatorname{Re}(z) \, dz,$$

b) C is the shortest path from $\pi/2i$ to πi and

$$\int_C e^z \, dz,$$

c) C is counterclockwise around the boundary of the square with vertices 0, i, 1+i and 1, and

$$\int_C \operatorname{Re}(z^2) \, dz.$$

- $\boxed{2}$ For what contours C will it follow from Theorem 1 that
 - a)

$$\int_C \frac{dz}{1-z} = 0,$$

b)

$$\int_C \frac{\exp(1/z^2)}{z^2 + 4} \, dz = 0.$$

- Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.
 - a) $f(z) = \tan(z/4)$,
 - **b)** $f(z) = 1/(\pi z 1)$.
- 4 Integrate

$$\oint_C \frac{dz}{z^2 - 1},$$

where C is given by:

- 5 Integrate $z \sin(z)/(2z-1)$ around the unit circle.
- [6] Integrate counterclockwise or as indicated. Show the details.
 - a) C is given by $4x^2 + (y-2)^2 = 4$ and

$$\oint_C \frac{dz}{z^2 + 4},$$

b) C is given by |z - i| = 1.4 and

$$\oint_C \frac{\operatorname{Ln}(z+1)}{z^2+1} \, dz,$$

c) C consists of |z|=2 counterclockwise and |z|=1 clockwise and

$$\oint_C \frac{\exp(z^2)}{z^2(z-1-i)} \, dz.$$

- 7 Integrate. Show the details.
 - a) C consists of |z| = 3 counterclockwise and |z| = 1 clockwise and

$$\oint_C \frac{4z^3 - 6}{z(z - 1 - i)^2} \, dz,$$

b) C is |z-3|=2 counterclockwise and

$$\oint_C \frac{\operatorname{Ln}(z+3)}{(z-4)^2} \, dz.$$