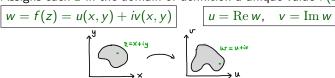
Complex Analysis

Sets in C:

Open: Contains open ball about each point Connected: Any two points can be connected by a finite continuous curve within the set Domain: Open and connected

Complex functions:

Assigns each z in the domain of definition a unique value $f(z) \in \mathbb{C}$



- Limit, continuity: Same as for functions of 2 real variables
- Derivative: Same definition/rules as for functions of one real variable
- Analytic functions:

f(z) analytic in domain D if defined and differentiable in all $z \in D$

 \Leftrightarrow Cauchy-Riemann equations hold in D: $|u_x = v_y, u_y = -v_x|$

October 11, 2021

Lecture 15: Complex Analysis

Kreyszig: Sections 13.4, 17.1

- Cauchy-Riemann equations
- 2 Laplace equation, Harmonic functions
- Conformal mappings

OBS: Du trenger 8 (av 12) øvinger godkjent for å få ta eksamen!!

ERJ (NTNU) TMA4120 Mathematics 4K October 11, 2021 2

Lecture 15: The Cauchy-Riemann equations

(CR)
$$u_x = v_y$$
 and $u_y = -v_x$

$$f(z) = u(x, y) + iv(x, y)$$
 analytic in domain D

 u_x, u_y, v_x, v_y exists, continuous, and satisfy (CR) in D

Lecture 15: Laplace equation

(Laplace)
$$u_{xx} + u_{yy} = 0$$

$$f(z) = u(x,y) + iv(x,y)$$
 analytic in domain D \Downarrow

u, v are 2x cont. differentiable + satisfy (Laplace) in D

 $\rightarrow u, v$ are conjugate harmonic functions

Lecture 15: Conformal mappings

Preserves angles and orientation between smooth curves

$$f$$
 analytic in D \Rightarrow f conformal where $f'
eq 0$ in D

Ex:
$$f(z)=z^n$$
 conformal at $z\neq 0$
At $z=0$: $\arg(\dot{w}_1-\dot{w}_2)=n\arg(\dot{z}_1-\dot{z}_2)$

Summary: Complex Analysis

Analytic functions and Cauchy-Riemann equations:

$$f(z) = u(x, y) + iv(x, y) \text{ analytic in domain } D$$

 u_x , u_y , v_x , v_y exists, are continuous, and $u_x = v_y$ and $u_y = -v_x$ in

2 Laplace equation
$$u_{xx} + u_{yy} = 0$$

$$f(z) = u(x, y) + iv(x, y)$$
 analytic in domain D

u, v are 2 times continuously differentiable, and $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$ in

u, v are conjugate harmonic functions.

Conformal mappings:

Maps preserving angles and orientation between smooth curves

$$f$$
 analytic in $D \Rightarrow f$ conformal where $f' \neq 0$ in D

$$f(z)=z^n$$
 conformal at $z\neq 0$, $z=0$: $\arg(\dot{w}_1-\dot{w}_2)=n\arg(\dot{z}_1-\dot{z}_2)$

D.