Summary Lecture 19: Cauchy's integral theorem

• Cauchy's integral formula: $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$ if

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

- (A1) f is analytic in simply connected domain D
- (A2) $z_0 \in D$, $C \subset D$ simple closed curve, positively oriented, enclosing z_0 .
- Infinitly differentiable:

$$f$$
 analytic in $D \Rightarrow$

f analytic in $D \Rightarrow f$ infinitely differentiable in D, and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

Properties of analytic functions:

Cauchy's inequality:
$$|f^{(n)}(z_0)| = \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$$
 if f analytic

Liouville's theorem: f analytic, bounded in $\mathbb{C} \Rightarrow f$ is constant

Morera's theorem: f continuous in simply connected domain D and $\oint_C f(z)dz = 0$ for all simple, closed $C \subset D \implies f$ analytic in D

Lecture 20: Complex power series

Kreyszig: Sections 15.1, 15.2

- Complex sequences and series
- Complex power series
- Convergence and divergence
- Radius of convergence
- Examples

Homework:

Repeat from Mat 1/GKA 2:

Taylor series. How to find/work with them, Taylor's thm, examples

Lecture 20: Complex series and sequences

Convergence (absolute/not), divergence, Cauchy

Geometric series

Convergence tests:

Comparison, ratio, root and divergence tests

Lecture 20: Compex power series

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \dots$$

Center
$$z_0$$
, coefficients a_n $[(z-z_0)^0=1]$

Convergence in z₁

$$\Rightarrow$$
 convergence in z for all $|z-z_0|<|z_1-z_0|$

Divergence in z_2

$$\Rightarrow$$
 divergence in z for all $|z-z_0|>|z_2-z_0|$

Lecture 20: Radius of convergence

Distance $R = |z_0 - z^*|$ to nearest point z^* where power series diverges

- Exists always
- Series converges (diverges) if $|z-z_0| < R \ (>R)$

Cauchy-Hadamard:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 (when the limit exists)

Summary Lecture 20: Complex power series

Complex series and sequences:

Definitions, results and proofs – similar to real case

Convergence, absolute convergence, divergence

Comparison, ratio, and root test; divergence test; geometric series

Complex power series:

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \dots$$

Center z_0 , coefficients a_n , $(z-z_0)^0=1$ by definition

Convergence in $z_1 \Rightarrow$ convergence in z for all $|z-z_0| < |z_1-z_0|$

Divergence in z_2 \Rightarrow divergence in z for all $|z - z_0| > |z_2 - z_0|$

Radius of convergence R:

Distance $R = |z_0 - z^*|$ to nearest point z^* where power series diverges

Always exists; series converges (diverges) if $|z - z_0| < R$ (> R)

Cauchy-Hadamard: $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ when the limit exists