Summary Lecture 22: Taylor and Laurent Series

Laurent series:

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

Example:
$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} + \dots$$

- 2 Laurent's theorem:
 - (a) There exists a unique Laurent series (1) that converges to f in the largest annulus $D: r < |z z_0| < R$ where f is analytic.

(b)
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*,$$

 $b_n = \frac{1}{2\pi i} \oint_C f(z^*) (z^* - z_0)^{n-1} dz^*$

Remarks:

Term wise addition, differerentiation, ... is ok

 a_n, b_n found from known Taylor series, substitution, ...

Lecture 23: Singularities and Residue integration

Kreyszig: Sections 16.2, 16.3

- Singular points
- Zeros
- **3** Classification, properties, $z = \infty$
- Residue integration
- Examples

Lecture 23: Singularities

Points z_0 where f(z) is not analytic/defined

Isolated singularity z_0 , the only one in some nbhd

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \underbrace{\sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}}_{\neq 0}, \quad 0 < |z - z_0| < R$$

Principal value of z_0 :

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

$$z_0$$
 order n pole:

$$b_n \neq 0$$
, $b_k = 0$, $k > n$

$$z_0$$
 isolated essential singularity: $b_n \neq 0$ for ∞ many n

$$b_n \neq 0$$
 for ∞ many n

Lecture 23: Zeros and infinity

Zeros of order *m*

Zeros are isolated; f has zero $\implies 1/f$ has pole

- f(z) has pole/essential singularity/zero at $z=\infty$
 - ↑ DEF
- $f(\frac{1}{w})$ has pole/essential singularity/zero at w=0

Lecture 23: Residue integration

 z_0 only singularity of f(z) enclosed by C

$$f(z) = a_0 + a_1(z - z_0) + \dots + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots,$$

 $0 < |z - z_0| < R$

Term wise integration/Laurent's theorem

$$\left| \oint_C f(z) dz = 2\pi i \frac{b_1}{b_1} \right|$$

Residue of f(z) at z_0 : Res $f(z) = b_1$

Summary Lecture 23: Singularities

- **Singularity**: Point z_0 where f(z) is not analytic/defined (...)
- Isolated singularity:

 z_0 is the only singularity in $|z-z_0| < R$ for some R > 0

Laurent's theorem

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \underbrace{\sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}}_{\neq 0}, \quad 0 < |z - z_0| < R$$

Principal value of z_0 :

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

 z_0 order *n* pole:

$$b_n \neq 0, b_k = 0, k > n$$

 z_0 isolated essential singularity: $b_n \neq 0$ for ∞ many n

$$b_n \neq 0$$
 for ∞ many t

Summary Lecture 23: Residue integration

Residue integration:

Goal:
$$\oint_C f(z)dz = 2\pi i \sum$$
 residues

Only one singularity:

 z_0 only singularity of f(z) enclosed by C (simple, closed, counter cl.wise)

$$f(z) = a_0 + a_1(z - z_0) + \dots + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots$$
, $0 < |z - z_0| < R$

↓ Term wise integration/Laurent's theorem

$$\oint_C f(z)dz = 2\pi i \frac{b_1}{b_1}$$

• Residue of f(z) at z_0 : $\underset{z=z_0}{\text{Res }} f(z) = b_1$

 b_1 -coefficient in Laurent series that converges in $0 < |z - z_0| < R!$