Summary: Fourier integral and transform

• Fourier integral of f(x), $x \in \mathbb{R}$:

$$\boxed{ f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{iwx} dw } \boxed{ \hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx }$$

2 Fourier transform of f(x), $x \in \mathbb{R}$:

$$\mathcal{F}[f](w) = \hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$

Invers:
$$\mathcal{F}^{-1}[g](x) = \check{g}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(w)e^{iwx}dw$$

Under certain conditions: $f(x) = I_f(x) = \mathcal{F}^{-1}[\mathcal{F}[f]](x)$

Properties:

$$\begin{split} \mathcal{F}[af(x)+bg(x)](w) &= a\mathcal{F}[f](w)+b\mathcal{F}[f](w) \\ \mathcal{F}[f'](w) &= (iw)\mathcal{F}[f](w) \qquad \qquad (|f(x)|\to 0 \text{ as } |x|\to \infty) \\ \mathcal{F}[e^{-iax}f(x)](w) &= \mathcal{F}[f](w+a) \end{split}$$

Lecture 9: Fourier transform and partial differential equations

Kreyszig: Section 11.9, 12.1

- Fourier transform
- Convolution
- Introduction to partial differential equations
- Examples

Homework:

- Read Kreyszig 12.2 yourselves.
- 2 Repeat complex numbers, absolute values, exponentials
- Repeat Solution of ordinary differential equations [Mat 3/Lin. Alg.]

Lecture 9: Fourier Transform

Important transform:

$$\mathcal{F}[e^{-ax^2}](w) = \frac{1}{\sqrt{2a}}e^{-\frac{w^2}{4a}}$$

Remember:

$$\mathcal{F}[f](w) = \hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx}dx$$

$$\mathcal{F}[af(x) + bg(x)](w) = a\mathcal{F}[f](w) + b\mathcal{F}[f](w)$$

$$\mathcal{F}[f'](w) = (iw)\mathcal{F}[f](w)$$

$$\mathcal{F}[e^{-iax}f(x)](w) = \mathcal{F}[f](w+a)$$

Lecture 9: Fourier Transform

Convolution:

$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$

$$\mathcal{F}[f * g](w) = \sqrt{2\pi} \,\mathcal{F}[f](w) \cdot \mathcal{F}[g](w)$$

Remember:

$$\mathcal{F}[f](w) = \hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx}dx$$

Lecture 9: PDEs

Partial differential equations (PDEs)

Example:
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 (or $u_t = c^2 u_{xx}$)

Order, linear, homogeneous, solution

Linear + homogeneous \Rightarrow Superposition

Uniqueness: Need boundary and initial conditions

Lecture 9: PDEs

2nd order PDEs

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} = F(x, y, u, u_x, u_y)$$

Туре	Condition	Typical example
Hyperbolic	$AC - B^2 < 0$	$u_{tt} - u_{xx} = 0$ (wave eqn)
Parabolice	$AC - B^2 = 0$	$u_t - u_{xx} = 0$ (heat eqn)
Elliptic	$AC - B^2 > 0$	$u_{xx} + u_{yy} = 0$ (Laplace eqn)

Summary: Fourier transform and PDEs

• Fourier transform $\mathcal{F}[f](w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx} dx$

$$\mathcal{F}[e^{-ax^2}](w) = \frac{1}{\sqrt{2a}}e^{-\frac{w^2}{4a}}$$

$$\left| \mathcal{F}[f * g](w) = \sqrt{2\pi} \, \mathcal{F}[f](w) \cdot \mathcal{F}[g](w) \right| \quad f * g(x) = \int_{-\infty}^{\infty} f(y)g(x - y) dy$$

Partial differential equations (PDEs)

Equations involving partial derivatives of the unknown

Concepts: Order, linear, homogeneous, hyperbolic/parabolic/elliptic

Solution: *u* solution of PDE in region *R* if

- (i) all derivatives appearing in PDE exist and are continuous in R
- (ii) u satisfy the PDE in all points in R

Superposition/Linearity:

 u_1 and u_2 solve same *linear*, homogeneous PDE in R; $a,b \in \mathbb{R}$

 $\Rightarrow au_1 + bu_2$ solves same PDE in R

Unique solution:

Need also boundary and initial conditions!