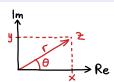
Summary: Complex Analysis

Complex number:

$$z = x + iy = (x, y) = re^{i\theta}$$



 $i^2 = -1$

Complex exponential function:

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y)$$

Extension of real exponential to $\mathbb C$

$$2\pi i$$
-periodic: $e^{z+2\pi i} = e^z$
 $e^{z_1}e^{z_2} = e^{z_1+z_2}$

Noots:
$$w = \sqrt[n]{z} \Leftrightarrow w^n = z$$

$$w = \sqrt[n]{r}e^{i(\frac{\theta}{n} + 2\pi\frac{k}{n})}, \quad k = 0, 1, \dots, n-1$$

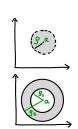
Sets:

Circle: $|z-a|=\rho$

 $|z-a|<\rho$ Open disk:

Closed annulus: $\rho_1 < |z-a| < \rho_2$

Half plane: Re z > 0, Im z < 0, ...



Lecture 14: Complex Analysis

Kreyszig: Section 13.3, 13.4

- Sets: Open, connected, domains
- Complex functions
- Limits, continuity, derivative
- Analytic functions, Cauchy-Riemann equations

Sets – as in \mathbb{R}^2

Limits, continuity – as for functions $f: \mathbb{R}^2 \to \mathbb{R}^2$

Derivatives – as for functions $f : \mathbb{R} \to \mathbb{R}$

OBS: Du trenger 8 (av 12) øvinger godkjent for å få ta eksamen!!

Lecture 14: Sets in €

Open (contains neighborhood of each point)

Closed (complement open)

Connected (a curve connects any two points)

Domain (open, connected)

3 / 6

Lecture 14: Complex functions

A function *f*

a rule assigning each $z \in S$ a unique value $f(z) \in \mathbb{C}$

S: domain of definition

$$w = f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

Limits, continuity (as for function $\mathbb{R}^2 \to \mathbb{R}^2$)

Derivatives (pprox as for functions $\mathbb{R} \to \mathbb{R}$)

- differentiation rules as for real functions

Lecture 14: Analytic functions

$$f(z)$$
 analytic in domain D

if f defined and differentiable for all $z \in D$

Cauchy-Riemann equations hold in *D*:

$$u_x = v_y, \quad u_y = -v_x$$

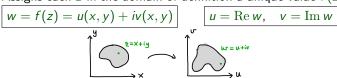
Summary: Complex Analysis

lacktriangle Sets in \mathbb{C} :

Open: Contains open disk about each point Connected: Any two points can be connected by a finite continuous curve within the set Domain: Open and connected

Complex functions:

Assigns each z in the domain of definition a unique value $f(z) \in \mathbb{C}$



- Limit, continuity: Same as for functions of 2 real variables
- Derivative: Same definition/rules as for functions of one real variable
- Analytic functions:

f(z) analytic in domain D if defined and differentiable in all $z \in D$

 \Leftrightarrow Cauchy-Riemann equations hold in D: $|u_x = v_y, u_y = -v_x|$

