Summary Lecture 18: Complex line integrals

Complex line integral:

$$\begin{split} &\int_{C} [af(z) + bg(z)]dz = a \int_{C} f(z)dz + b \int_{C} g(z)dz \\ &\int_{-C} f(z)dz = -\int_{C} f(z)dz \\ &\int_{C_{1} \cup C_{2}} f(z)dz = \int_{C_{1}} f(z)dz + \int_{C_{2}} f(z)dz \quad \text{when} \quad C_{1} \cap C_{2} = \emptyset \\ &\boxed{|\int_{C} f(z)dz| \leq M \cdot L} \quad M = \max_{z \in C} |f(z)|, \quad L = \text{length of } C \end{split}$$

Cauchy's integral theorem

f analytic in simply connected domain D, $C \subset D$ simple, closed curve

$$\Rightarrow \oint_C f(z)dz = 0$$

- Consequences:
 - (a) $\int_C f(z)dz$ is independent of path in D
 - (b) The indefinite integral of f exists in D, i.e. a function F s.t.

$$F'(z) = f(z)$$
 and $\int_{z}^{z_2} f(z) dz = F(z_2) - F(z_1)$.

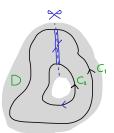
Summary Lecture 18: Domains with holes

Omains with holes:

Cut to have a simlply connected domain...

... add segments along cut to have closed curve...

Then use Cauchy:



Cauchy in the cut domain D^* and cancelations along cut:

$$\oint_{C_1} f(z)dz = \oint_{C_2} f(z)dz$$

Summary Lecture 18: Example

 C_1 any simple, closed curve surrounding $z = z_0$

$$C_1$$
: circle $|z - z_0|^2 = r^2$

Cauchy's integral theorem in domain with one hole, $m \in \mathbb{Z}$:

$$\begin{split} \oint_{C_1} (z-z_0)^m dz &= \oint_{C_2:z(t)=z_0+re^{it}} (z-z_0)^m dz \\ &\underset{Eks.1}{\underset{=}{\text{last time}}} \begin{cases} 2\pi i, & m=-1, \\ 0, & m\neq -1, \ m\in \mathbb{Z} \end{cases} \end{split}$$

Lecture 19: Complex Analysis

Kreyszig: Sections 14.3, 14.4

- Cauchy integral formula
- Analytic functions infinitely differentiable
- Properties of analytic functions:
 Cauchys inequality and Liouvilles theorem
- Examples

Homework:

Repeat from Mat 1/GKA 2: Sequences, series, convergence tests

Lecture 19: Cauchy's integral formula

- (A1) f is analytic in simply connected domain D
- (A2) $z_0 \in D$, $C \subset D$ simple closed curve, positively oriented, enclosing z_0

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Lecture 19: Analytic => infinitly differentiable

f analytic in $D \Rightarrow f \infty$ -differentiable in D, and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

ERJ (NTNU) TMA4120 Mathematics 4K 6 / 9

Lecture 19: Properties of analytic functions

Cauchy's inequality:

$$f$$
 analytic \Longrightarrow $|f^{(n)}(z_0)| \leq \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$

Gauss mean value theorem:

$$f$$
 analytic $\implies f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$

Liouville's theorem:

f analytic, bounded in $\mathbb{C} \Rightarrow f$ is constant

Lecture 19: Properties of analytic functions

Cauchy's inequality:

$$|f|$$
 analytic in $|z-z_0| \le r \implies |f^{(n)}(z_0)| \le \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$

Gauss mean value theorem:

$$f$$
 analytic in $|z-z_0| \le r \implies f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$

Liouville's theorem:

f analytic, bounded in $\mathbb{C} \implies f$ is constant

Maximum (modulus) principle:

f analytic in domain D and |f(z)| attains its max in D

 \implies f is constant in D

Morera's theorem:

f continuous in D and $\oint_C f(z)dz = 0$ for all simple, closed $C \subset D$ $\implies f$ analytic in D

Summary Lecture 19

- Cauchy's integral formula: $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z z_0} dz$ if
 - (A1) f is analytic in simply connected domain D
 - (A2) $z_0 \in D$, $C \subset D$ simple closed curve, positively oriented, enclosing z_0 .
- Infinitly differentiable:

f analytic in $D \Rightarrow f$ infinitely differentiable in D, and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Properties of analytic functions:

Cauchy's inequality: $|f^{(n)}(z_0)| \leq \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$ if f analytic

Liouville's theorem: f analytic, bounded in $\mathbb{C} \Rightarrow f$ is constant

Morera's theorem: f continuous in D and $\oint_C f(z)dz = 0$ for all simple, closed $C \subset D \Rightarrow f$ analytic in D