Summary Lecture 21: Complex power series

Termwise operations on power series:

(a)
$$c_1 \sum_{n=0}^{\infty} a_n z^n + c_2 \sum_{n=0}^{\infty} b_n z^n = \sum_{n=0}^{\infty} (c_1 a_n + c_2 b_n) z^n$$
 $[R = \min(R_a, R_b)]$

(b)
$$\left(\sum_{n=0}^{\infty} a_n z^n\right)' = \sum_{n=1}^{\infty} n a_n z^{n-1}$$
 [$R = R_a$]

(c)
$$\int \left(\sum_{n=0}^{\infty} a_n z^n\right) dz = \sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1} + C$$
 [$R = R_a$]

Representation of functions by power series:

Represents their sum where they converges

Uniqueness:
$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} b_n z^n \quad \Rightarrow \quad a_n = b_n, \ n = 0, 1, 2, \dots$$

The function is analytic where the power series converges

Summary Lecture 21: Complex power series

Taylor series:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad a_n = \frac{1}{n!} f^{(n)}(z_0)$$

Taylor's theorem:

If f is analytic in a domain D and $z_0 \in D$, then

- (a) the Taylor series of f about z_0 exists and is unique,
- (b) and it converges and equals f in the largest open disc about z_0 where f is analytic

2 / 7

Lecture 22: Taylor and Laurent series

Kreyszig: Sections 15.4, 16.1

- Important power series
- Finding power series
- Laurent series, definition and convergence
- Examples

Homework:

Repeat Taylor series [Mat 1/GKA 1]

Lecture 22: Taylor series

Important series:

```
e^z, cos z, sin z, cosh z, ..., \ln z, ..., \frac{1}{1-z}, ...
```

Finding Taylor series: (as for real series)

Use known series, term wise operations (addition, derivation, integration), substitution, geometric series, binomial series, partial fractions.

Lecture 22: Laurent series

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

Example:

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} + \dots$$

ERJ (NTNU)

Lecture 22: Laurent's theorem

(a) There exists a unique Laurent series (1) that converges to f in the largest annulus

$$D: r < |z - z_0| < R$$

where f is analytic.

(b)
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^*-z_0)^{n+1}} dz^*$$
, $b_n = a_{-n}$.

Summary Lecture 22: Taylor and Laurent series

Laurent series:

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

Example:
$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} + \dots$$

- 2 Laurent's theorem:
 - (a) There exists a unique Laurent series (1) that converges to f in the largest annulus $D: r < |z z_0| < R$ where f is analytic.

(b)
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*,$$

 $b_n = \frac{1}{2\pi i} \oint_C f(z^*) (z^* - z_0)^{n-1} dz^*$

Term wise addition, differerentiation, \dots is ok

 a_n, b_n found from known Taylor series, substitution, ...

