Fourier Series

- f(x) is p-periodic if f(x+p)=f(x) for all $x \in \mathbb{R}$.
- Fourier Series:

Representation of periodic functions by trigonometric series,

(1)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \qquad (p = 2\pi).$$

Questions:

What is a_n and b_n ?

When does the series (1) converges?

When and where is its sum equal f(x)?

Comments

Fourier series can represent discontinuous functions!!

Fourier series are a very important tool in science and technology.

Kreyszig: Section 11.1

- Periodic functions
- The trigonometric system
- Fourier series, the coefficients
- Fourier series, convergence and sum
- Examples

p-periodic functions:

$$f(x) = f(x + p)$$
 for all $x \in \mathbb{R}$.

$$\mathcal{T} = \{1, \cos x, \sin x, \dots, \cos nx, \sin nx, \dots\}$$
(2π -periodic)

Orthogonality:

$$\langle f,g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx = 0$$
 for $f,g \in \mathcal{T}, f \neq g$.

Fourier series for 2π -periodic f(x):

$$S_f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

where

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx \qquad \qquad = \frac{\langle f, 1 \rangle}{\langle 1, 1 \rangle}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx \qquad \qquad = \frac{\langle f, \cos nx \rangle}{\langle \cos nx, \cos nx \rangle}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx \qquad \qquad = \frac{\langle f, \sin nx \rangle}{\langle \sin nx, \sin nx \rangle}$$

Convergence and sum

Assume

- (A1) f periodic and piecewise continuous
- (A2) f has both right and left derivatives at x

Then the Fourier series S_f converge at x and

$$S_f(x) = \frac{f(x^+) + f(x^-)}{2},$$

i.e. $S_f(x) = f(x)$ if f is also continuous at x.

 $(\mathcal{T} \text{ orthogonal basis for } L^2: \quad f \in L^2(-\pi,\pi) \implies f = \sum_{p \in \mathcal{T}} \frac{\langle f,p \rangle}{\langle p,p \rangle} p)$

Summary: Fourier series

Periodic functions:

p-periodic:
$$f(x) = f(x + p)$$
 (= $f(x + np)$, $n \in \mathbb{N}$), $x \in \mathbb{R}$.
 2π -periodic: $a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

2 Trigonometric system:

$$\mathcal{T} = \{1, \cos x, \sin x, \dots, \cos nx, \sin nx, \dots\}$$
 (2 π -periodic)

Orthogonality:

$$\langle f,g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx = 0 \quad \text{ for } \quad f,g \in \mathcal{T}, \ f \neq g.$$

Solution Fourier series for 2π -periodic f(x):

$$S_f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \text{ where}$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx$$

Summary: Fourier series

Figure: From Wikipedia

Convergence and sum

Assume

(A1) f periodic and piecewise continuous,

(A2) f has both right and left derivatives at x.

Then the Fourier series S_f converge at x and

$$S_f(x) = \frac{f(x^+) + f(x^-)}{2},$$

i.e. $S_f(x) = f(x)$ if f is also continuous at x.

Animation by Yuya a

^aOscillations near discontinuities do not die out – Gibb's phenomenon!