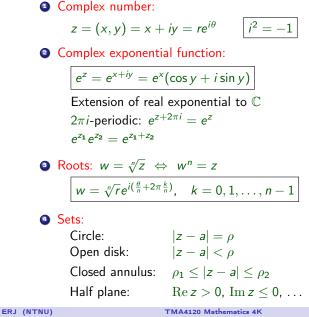
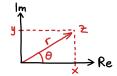
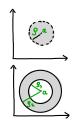
Summary: Complex Analysis







Lecture 14: Complex Analysis

Kreyszig: Section 13.3, 13.4

- Sets: Open, connected, domains
- Omplex functions
- Limits, continuity, derivative
- Analytic functions, Cauchy-Riemann equations

Sets – as in \mathbb{R}^2

Limits, continuity – as for functions $f : \mathbb{R}^2 \to \mathbb{R}^2$

Derivatives – as for functions $f : \mathbb{R} \to \mathbb{R}$

OBS: Du trenger 8 (av 12) øvinger godkjent for å få ta eksamen!!

Open (contains neighborhood of each point)

Closed (complement open)

Connected (a curve connects any two points)

Domain (open, connected)

Lecture 14: Complex functions

A function f

a rule assigning each $z \in S$ a unique value $f(z) \in \mathbb{C}$

S: domain of definition

$$w = f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

Limits, continuity (as for function $\mathbb{R}^2 \to \mathbb{R}^2$)

Derivatives (\approx as for functions $\mathbb{R} \to \mathbb{R}$)

- differentiation rules as for real functions

f(z) analytic in domain D

if f defined and *differentiable* for all $z \in D$

1

Cauchy-Riemann equations hold in D:

$$u_x = v_y$$
, $u_y = -v_x$

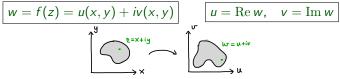
Summary: Complex Analysis

• Sets in \mathbb{C} :

Open: Contains open disk about each point Connected: Any two points can be connected by a finite continuous curve within the set Domain: Open and connected

J) OJ

Assigns each z in the domain of definition a unique value $f(z) \in \mathbb{C}$



Same as for functions of 2 real variables

O Derivative: Same definition/rules as for functions of one real variable

Analytic functions:

f(z) analytic in domain D if defined and *differentiable* in all $z \in D$

 \Leftrightarrow Cauchy-Riemann equations hold in D: $u_x = v_y$, $u_y = -v_x$