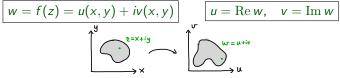
Complex Analysis

O Sets in C:

Open: Contains open ball about each point Connected: Any two points can be connected by a finite continuous curve within the set Domain: Open and connected

Assigns each z in the domain of definition a unique value $f(z) \in \mathbb{C}$



Same as for functions of 2 real variables

O Derivative: Same definition/rules as for functions of one real variable

Analytic functions:

f(z) analytic in domain D if defined and *differentiable* in all $z \in D$

 \Leftrightarrow Cauchy-Riemann equations hold in D: $u_x = v_y$, $u_y = -v_x$

Lecture 15: Complex Analysis

Kreyszig: Sections 13.4, 17.1

- Cauchy-Riemann equations
- 2 Laplace equation, harmonic functions
- Onformal mappings

OBS: Du trenger 8 (av 12) øvinger godkjent for å få ta eksamen!!

Lecture 15: The Cauchy-Riemann equations

(CR)
$$u_x = v_y$$
 and $u_y = -v_x$

$$f(z) = u(x, y) + iv(x, y)$$
 analytic in domain D

 u_x, u_y, v_x, v_y exists, continuous, and satisfy (CR) in D

Lecture 15: Laplace equation

(Laplace)
$$u_{xx} + u_{yy} = 0$$

$$f(z) = u(x,y) + iv(x,y)$$
 analytic in domain D

u, *v* are $2 \times \text{cont.}$ differentiable + satisfy (Laplace) in *D*

\rightarrow *u*, *v* are conjugate harmonic functions

Preserves angles and orientation between smooth curves

f analytic in $D \Rightarrow f$ conformal where $f' \neq 0$ in D

Ex:
$$f(z) = z^n$$
 conformal at $z \neq 0$
At $z = 0$: $\arg(\dot{w}_1 - \dot{w}_2) = n \arg(\dot{z}_1 - \dot{z}_2)$

Summary Lecture 15: Complex Analysis

 Analytic functions and Cauchy-Riemann equations:
 f(z) = u(x, y) + iv(x, y) analytic in domain D

 ⁽¹⁾/₁
 u_x, u_y, v_x, v_y exists, are continuous, and
 u_x = v_y and u_y = -v_x in D.

a Laplace equation $u_{xx} + u_{yy} = 0$ f(z) = u(x, y) + iv(x, y) analytic in domain D ↓ u, v are 2 times continuously differentiable, and $\boxed{u_{xx} + u_{yy} = 0 \text{ and } v_{xx} + v_{yy} = 0} \text{ in } D.$

u, v are conjugate harmonic functions.

Onformal mappings:

Maps preserving angles and orientation between smooth curves

f analytic in $D \Rightarrow f$ conformal where $f' \neq 0$ in D

$$f(z)=z^n ext{ conformal at } z
eq 0, \hspace{0.2cm} z=0: \hspace{0.2cm} ext{arg}(\dot{w}_1-\dot{w}_2)=n \hspace{0.2cm} ext{arg}(\dot{z}_1-\dot{z}_2)$$