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Problem 1 (i) Find the solution y(t) of the Volterra integral equation
t
y(t) — 2/ eyt —7)dr = e, t>0.
0

(ii) Find the inverse Laplace-transform of the function

35+ 3

Fls)= 212
(5) 2+ 2542

Problem 2 Let f(z) = §sinx be defined for € [0,7]. The Fourier cosine
series of f(z) is given by

> 1
=1-2 _— 2nx).
S(z) nz::l 1 cos(2nx)

(i) Sketch S(x) on the interval [—2m, 27, (ii) determine the sum S; of the series

So=-2 4n? — 1’

n=1

and
(iii) show that S(z) is uniformly and absolutely convergent for x € [—m, 7.

Hint: Weierstrass M-test. You can assume that > >, nik converges when k£ > 1.

Problem 3 The temperature in a rod with increasing heat conductivity over
time is modeled by the partial differential equation and boundary conditions

1 ou 0%*u
1) (1530) 3 g =0 O<w<m >0
ou ou
(2) 0.0 = S mn =0, 120

a) Find all solutions on the form u(x,t) = F(z)G(t) of (1) and (2).

b) We also have a condition at ¢ = 1,

(3) u(z,1) =10cosz + > COS(;M;), 0<z<m.
n=2 n

Find a solution u(z,t) of the problem (1), (2) and (3) for ¢ > 0.
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Problem 4 Let

f(z) =iz — i and g(z) = e 17

Show that f(z) is analytic for z # 0, but that g(z) is not analytic in any point.

Problem 5 The Laurent series
ex ad s b,
CETCE ;J“”(Z R DY ey
converges at the point z = 3. At which of the points
z = —2, 2o=14+2 and z;;z%—%i,

does it also converge? Justify your answer.

Problem 6

a) Let Sy be the semicircle z = Re? for 6 € [0, 7]. Show that

——d 0 R :
/SR<Z2+4)2 z— as — 00
b) Use the result from a) and the Residue theorem to determine the value of

the integral '
00 el

I = / ———dx.

—00 (1'2 + 4)2 o
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Miscellaneous

1.t>0 1, t>
o Heaviside function u(t):{ U= , (t—a):{ tza

0,1<0 0, 1<a
« Dirac Delta function §(t — a) is zero except at t = a, [°° 6(t — a)dt =1,
and [ g(t)6(t —a)dt = g(a) for any continuous function g.

« Convolution

For functions defined on the real line:

frg(x) = /o:o fy)g(z —y)dy = /O:O flz—y)gly)dy, =eR.

For functions defined only on the positive half-axis:

frg@) = [ 1@y —ydy. @ >0

Laplace transform
o Definition: L[f](s) = F(s) = J5° f(t)e *'dt

General formulas [0 F(s)
1 1
Lle f(1)](s) = F(s — a) =12 |2
L[f')(s) = sL[f] = £(0) et P
L[f")(s) = L[] — s£(0) = f'(0) thet,n=1,2, ... | =i
L[fs f(7)dr)|(s) = LL[f] cos bt =
L[f * gl(s) = LIf1(s)L[g](s) sin bt e
LIf(t = c)ult — ¢)](s) = e=F(s), ¢ >0 e cos bt P
Ltf(t)](s) = —F'(s) e sin bt e
L[H2](s) = [ F(o)do ult —c)e>0 |2
S(t—c)e>0 |ee
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Fourier series and Fourier transform

e 2[-periodic functions, real and complex form

f(z) ~ag+ Z (y, COS nL + by, sin@ Z Cn€ mLM,
n=1 ne—oo
where
ag = 21[//_]; flz)dz, a, = 2/_LLf(x) Cos?dx, b, = 2/_LL f(z )smn—zwdx
Co=ao, =5 / ) T, Cp = ;(an —iby), ¢_p=Cp.

« Functions defined on the whole real line (need not be periodic)

f(w) = F[f](w)

r)e " dg,

wé—w/f;

@) = F ) = o= [ Fw)emau,

o Parseval’s identities

r [k = 3 el [T iswpde= [ lw)Pa

n=—oo

General formulas f(z) f(w)
7 = P L

— A 1
f(x - CL) = e_mwf(w) e—axu(x) \/%(a n zw)
. 1 T e—olwl
f( _b)_ebf() 22 + g2 2 4
9= V2 fg vt/
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Complex numbers and analytic functions

o "W = ¢%(cosy + isiny)

1z —1iz . iz__ ,—1z z —z . zZ__,—z
e COsSz =%t~ g§iny=¢=¢— coshz = €6~ gsinhz = £=¢
2 2% 2 2

e Taylor and Laurent series of an analytic function

= f(z0) 1 f(z)
nz_% n(z = 20)", Qp = ol Tm]{ (z—zo)”“d'z’

f(z) = nf:oan z—z)" i b, = 217rz Y{Cf(z)(z — 20)" tdz

— Z—ZO

Some useful integrals
Jxsinaxdr = a%sinax — Zcosar +C

Jxcosaxdr = % cosax + L sinaz + C

22azsmaw+ Mcosa:l:—i—C

[ x?sinax dx =
a2 .

[ x? cos ax dx = %xcosa:z:— 2%smaac%—C

Je*sinbxrdr = 2+b2 (asinbz — bcosbx) + C

[ e* cosbxr dx = a2+b2 (acosbxr + bsinbzr) + C

[ e dy = \/E, a>0

Some trigonometric identities
cos(a £ b) = cosacosb Fsinasinb

sin(a £ b) = sinacosb £ cosasinb

Some important series

Zx

ooxn

o — =¢" for z € R.
= n!

for lz] <1, > " diverges for |z] > 1.
n=0
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Linear second order differential equations
Let 7, and ry solve r?2+4+ar+b=0. Then
y'(x) +ay' () + by =0
has general solution given by:

y(x) = Cre™® + Cre™ if ri#ry, 11,72 € R,
y(x) = C1e"" + Coxe™” if ro=7ry, T1,73 €R,

y(x) = e**(C cos fx + Cysin fx) if rn=a+if, ro=a—if, a,f€cR.



