

Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4120 Mathematics 4K

Academic contact during examination: Espen Phone:	R. Jakobsen			
Academic contact present at the exam location: NO				
Examination date: 27. November, 2024				
Examination time (from-to): 09:00-13:00				
Permitted examination support material: (Code	e C): Approved simple calculator.			
	,			
Other information: Every answer must be justified; describe clearly h	ow you have reached your answers.			
The even has 8 problems 1 2 2 a 2 b 4 5 6				
when the grade is computed.	6-a, 6-b, all of which will be given equal weight			
when the grade is computed.	5-a, 6-b, all of which will be given equal weight			
when the grade is computed. Language: English	5-a, 6-b, all of which will be given equal weight			
when the grade is computed. Language: English Number of pages: 2	5-a, 6-b, all of which will be given equal weight			
when the grade is computed. Language: English				
when the grade is computed. Language: English Number of pages: 2	Checked by:			
when the grade is computed. Language: English Number of pages: 2 Number of pages enclosed: 4 Informasjon om trykking av eksamensoppgave				
when the grade is computed. Language: English Number of pages: 2 Number of pages enclosed: 4 Informasjon om trykking av eksamensoppgave Originalen er:				
when the grade is computed. Language: English Number of pages: 2 Number of pages enclosed: 4 Informasjon om trykking av eksamensoppgave				

Problem 1 (i) Find the solution y(t) of the Volterra integral equation

$$y(t) - 2 \int_0^t e^{-2\tau} y(t-\tau) d\tau = e^{-t}, \qquad t \ge 0.$$

(ii) Find the inverse Laplace-transform of the function

$$F(s) = \frac{3s+3}{s^2+2s+2}.$$

Problem 2 Let $f(x) = \frac{\pi}{2} \sin x$ be defined for $x \in [0, \pi]$. The Fourier cosine series of f(x) is given by

$$S(x) = 1 - 2\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \cos(2nx).$$

(i) Sketch S(x) on the interval $[-2\pi, 2\pi]$, (ii) determine the sum S_0 of the series

$$S_0 = -\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2 - 1}$$
, and

(iii) show that S(x) is uniformly and absolutely convergent for $x \in [-\pi, \pi]$.

Hint: Weierstrass M-test. You can assume that $\sum_{n=1}^{\infty} \frac{1}{n^k}$ converges when k > 1.

Problem 3 The temperature in a rod with increasing heat conductivity over time is modeled by the partial differential equation and boundary conditions

(1)
$$\left(\frac{1}{1+2t}\right)\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \qquad 0 < x < \pi, \qquad t > 0,$$

(2)
$$\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(\pi,t) = 0, \qquad t \ge 0.$$

- a) Find all solutions on the form u(x,t) = F(x)G(t) of (1) and (2).
- **b)** We also have a condition at t = 1,

(3)
$$u(x,1) = 10\cos x + \sum_{n=2}^{\infty} \frac{\cos(nx)}{n^2}, \qquad 0 \le x \le \pi.$$

Find a solution u(x,t) of the problem (1), (2) and (3) for t > 0.

Problem 4 Let

$$f(z) = iz - \frac{1}{z}$$
 and $g(z) = e^{-|z|^2}$.

Show that f(z) is analytic for $z \neq 0$, but that g(z) is not analytic in any point.

Problem 5 The Laurent series

$$\frac{e^{\frac{1}{z}}}{(z^2+4)(z-1)} = \sum_{n=0}^{\infty} a_n (z-1)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-1)^n}$$

converges at the point z = 3. At which of the points

$$z_1 = -2,$$
 $z_2 = 1 + 2i$ and $z_3 = \frac{1}{2} - \frac{1}{2}i,$

does it also converge? Justify your answer.

Problem 6

a) Let S_R be the semicircle $z = Re^{i\theta}$ for $\theta \in [0, \pi]$. Show that

$$\int_{S_R} \frac{e^{iz}}{(z^2+4)^2} dz \to 0 \quad \text{as} \quad R \to \infty.$$

b) Use the result from a) and the Residue theorem to determine the value of the integral

$$I = \int_{-\infty}^{\infty} \frac{e^{ix}}{(x^2 + 4)^2} dx.$$

Miscellaneous

- Heaviside function $u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$, $u(t-a) = \begin{cases} 1, & t \ge a \\ 0, & t < a \end{cases}$
- Dirac Delta function $\delta(t-a)$ is zero except at t=a, $\int_{-\infty}^{\infty} \delta(t-a)dt=1$, and $\int_{-\infty}^{\infty} g(t)\delta(t-a)dt=g(a)$ for any continuous function g.
- Convolution

For functions defined on the real line:

$$f*g\left(x\right)=\int_{-\infty}^{\infty}f(y)g(x-y)dy=\int_{-\infty}^{\infty}f(x-y)g(y)dy,\quad x\in\mathbb{R}.$$

For functions defined only on the positive half-axis:

$$f * g(x) = \int_0^x f(y)g(x-y)dy, \quad x > 0.$$

Laplace transform

• Definition: $\mathcal{L}[f](s) = F(s) = \int_0^\infty f(t)e^{-st}dt$

General formulas	f(t)	F(s)
	1	$\frac{1}{s}$
$\mathcal{L}[e^{at}f(t)](s) = F(s-a)$	$t^n, n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}$
$\mathcal{L}[f'](s) = s\mathcal{L}[f] - f(0)$	e^{at}	$\frac{1}{s-a}$
$\mathcal{L}[f''](s) = s^2 \mathcal{L}[f] - sf(0) - f'(0)$	$t^n e^{at}, n = 1, 2, \dots$	$\frac{n!}{(s-a)^{n+1}}$
$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right](s) = \frac{1}{s}\mathcal{L}[f]$	$\cos bt$	$\frac{s}{s^2+b^2}$
$\mathcal{L}[f * g](s) = \mathcal{L}[f](s)\mathcal{L}[g](s)$	$\sin bt$	$\frac{b}{s^2+b^2}$
$\mathcal{L}[f(t-c)u(t-c)](s) = e^{-cs}F(s), \ c > 0$	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$\mathcal{L}[tf(t)](s) = -F'(s)$	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$
$\mathcal{L}\left[\frac{f(t)}{t}\right](s) = \int_{s}^{\infty} F(\sigma)d\sigma$	u(t-c), c > 0	$\frac{e^{-cs}}{s}$
	$\delta(t-c), c > 0$	e^{-cs}

Fourier series and Fourier transform

• 2L-periodic functions, real and complex form

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) \sim \sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi x}{L}},$$

where

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx, \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx,$$

$$c_0 = a_0, \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-\frac{in\pi x}{L}} dx, \qquad c_n = \frac{1}{2} (a_n - ib_n), \quad c_{-n} = \bar{c}_n.$$

• Functions defined on the whole real line (need not be periodic)

$$\hat{f}(w) = \mathcal{F}[f](w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx}dx,$$

$$f(x) = \mathcal{F}^{-1}[\hat{f}](x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w)e^{iwx}dw.$$

• Parseval's identities

$$\frac{1}{2L} \int_{-L}^{L} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2, \qquad \int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw$$

General formulas	f(x)	$\hat{f}(w)$
$\widehat{f'(x)} = iw\widehat{f}(w)$	$\delta(x-a)$	$\frac{1}{\sqrt{2\pi}}e^{-iaw}$
$\widehat{f''(x)} = -w^2 \widehat{f}(w)$	$\begin{cases} 1, & -b \le x \le b \\ 0, & x > b \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin bw}{w}$
$\widehat{f(x-a)} = e^{-iaw}\widehat{f}(w)$	$e^{-ax}u(x)$	$\frac{1}{\sqrt{2\pi}(a+iw)}$
$\hat{f}(w-b) = e^{\widehat{ibx}} \widehat{f(x)}$	$\frac{1}{x^2 + a^2}$	$\sqrt{\frac{\pi}{2}} \frac{e^{-a w }}{a}$
$\widehat{f * g} = \sqrt{2\pi} \widehat{f} \widehat{g}$	e^{-ax^2}	$\frac{1}{\sqrt{2a}}e^{-w^2/(4a)}$

Complex numbers and analytic functions

- $e^{x+iy} = e^x(\cos y + i\sin y)$
- $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} e^{-iz}}{2i}$, $\cosh z = \frac{e^z + e^{-z}}{2}$, $\sinh z = \frac{e^z e^{-z}}{2}$
- Taylor and Laurent series of an analytic function

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz,$$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}, \qquad b_n = \frac{1}{2\pi i} \oint_C f(z) (z - z_0)^{n-1} dz$$

$$b_n = \frac{1}{2\pi i} \oint_C f(z)(z - z_0)^{n-1} dz$$

Some useful integrals

$$\int x \sin ax \, dx = \frac{1}{a^2} \sin ax - \frac{x}{a} \cos ax + C$$

$$\int x \cos ax \, dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax + C$$

$$\int x^{2} \sin ax \, dx = \frac{2}{a^{2}} x \sin ax + \frac{2 - a^{2} x^{2}}{a^{3}} \cos ax + C$$

$$\int x^{2} \cos ax \, dx = \frac{2}{a^{2}} x \cos ax - \frac{2 - a^{2} x^{2}}{a^{3}} \sin ax + C$$

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$$

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}, \ a > 0$$

Some trigonometric identities

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

Some important series

•
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 for $|x| < 1$, $\sum_{n=0}^{\infty} x^n$ diverges for $|x| \ge 1$.

•
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$
 for $x \in \mathbb{R}$.

Linear second order differential equations

Let r_1 and r_2 solve $r^2 + ar + b = 0$. Then

$$y''(x) + ay'(x) + by = 0$$

has general solution given by:

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$
 if $r_1 \neq r_2, r_1, r_2 \in \mathbb{R}$,

$$y(x) = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$$
 if $r_1 = r_2, r_1, r_2 \in \mathbb{R}$,

$$y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$
 if $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, $\alpha, \beta \in \mathbb{R}$.