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Problem 1 (i) Find the solution y(t) of the Volterra integral equation

t
y(t) — 2/ eyt —1)dr =€t t>0.
0

(ii) Find the inverse Laplace transform of the function

3s+3

Fls)= =212
(5) 5242542

Solution. (i) We use the Laplace transform and note the convolution

t
/ e 2Tyt — 1) dr = e 2 5 y(t).
0

Laplace transforming and using the convolution theorem we get

{ i / 27y dT} (s)=£[e] ()
& LIy()] (s) —2£[ %y( B (s)=£]e7"] ()
& Y(s) = 2L [e7] (s)- Ly(1)] (s) = £ [e7"] (5)
< Yis) - 341—2 (8)_sj1L1

2 1

& Y(s)<1—8+2>—5+1
< Y(S)sj-Q - S—Il-l
< Yis) = S(Ss—:—Ql)'

Taking the inverse Laplace transform, expanding in partial fractions and looking up the
resulting fractions in the table, gives us

_ _ +2 1]2 1 _
=LY t:l{s }t:l— ]t:2—t
v = o =ct [ o -t 2o -2
1 1
Alternatively: Complete the square to get V(s) = —=t2 — — "3 e

= 3
(+3)F _ (+h 1 G
and then by the tables (the sinh and cosh formulas were not available on the exam!)

1 1
L7y = e~ 2! cosh (2t> + 3¢ 2! sinh <2t) =2—¢!

(ii) Simply using the table after completing the square we get

} (1) = 3£ {(Sjl*);“] (£) = 3¢ cos(t).

35+ 3

0= s
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Alterntive: Complete the square and then use the first shift theorem,

s+1 s
t)y=371 | ———— t—3t£1{ }t—?)t t).

1) =307 [ | 0 =3 | g | 0 = e eostr)
Problem 2 Let f(z) = 7 sin(x) be defined for x € [0,7]. The Fourier cosine series of f is
given by

— 1
S(z)=1-2 n2:1 1 cos(2nx).

(i) Sketch S(z) on the interval [—2, 27], (ii) determine the value Sy of the series

n

= (~1
_2_314(#2

and (iii) show that S(z) converges uniformly and absolutely for z € [—, 7].

Hint: Weierstrass M-test. You can assume that Y k converges for k > 1.

Solution. (i) Since f is defined on [0, L] with L = =, the Fourier cosine series S
of f is the Fourier series of the even 2m-periodic extension of f. This extension f
is continuous since f is continuous and f(0) = 0 = f(m). Since f'(x) = T cos(x)
for z € (0,7), lim, o+ f'(x) = 5, and lim, - f'(z) = —3, the left- and right-hand
derivatives of f exists in all points. Thus by the pointwise convergence result for Fourier
series, S(z) = f(x) in every point. We plot f in fig. 1.

RS
[\

—éﬂ' _54 ;77 _‘g
Figure 1: Fourier cosine series of f(z) = F sin(z) based on [0, 7]

(ii) Since cos(nm) = (—=1)", we see that we can recover Sy from S(75):

T T T T COS 2n
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(iii) To prove uniform and absolute convergence we use the Weierstrass M-test. For
every x € [—m, ] and n > 1, we can bound

1 1
cos(2nz)| < — < —

4n? — 1 3n2 — n2’

Since Y 02, # converges, by the Weierstrass M-test we get uniform and absolute conver-
gence of the series Y0° | -—3— cos(2nz) and therefore also for S(z) = 1-2 3202 | 3 cos(2nz).

Problem 3 The temperature of a rod with increasing thermal conductivity over time is
modelled with the partial differential equation with boundary conditions
1 ou  0%u
Z_Z 2 0 t>0 1
<1+2t> ot oz 7 SEST -0 L
ou Ju
—(0,t) = —(m,t) =0 t>0. 2
5, (01 = (1 1) =0, > 2)

a) Find all solutions of the form u(x,t) = F(z)G(t) of (1) and (2).
b) Given the additional condition in ¢ =1

oo

u(x,1) = 10cos(z) + Z

n=2

cos(nx) 0<z<m, 3)

n2

find a solution u(z,t) of (1), (2) and (3) for t > 0.

Solution.

a) 1) ODEs for F, G: Setting u(z,t) = F(z)G(t), the PDE (1) is equivalent to

1

mF(x)G’(t) — F"(2)G(t) = 0.

Assuming F(x)G(t) # 0 we can divide by F(z)G(t) and get

1 &) — F(x) = const = k
1+2t G(t)  F(x) 7

since the left and right hand sides are functions of ¢ and x respectively. Hence we
get two ODEs
F'"(z) = kF(x), G'(t) = (1 +2t)kG(1).

From the boundary condition (2) we further get

FI0)G(t) = uz(0,1) = 0 = uy(m, t) = F'(1)G(t)
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so that by assuming G # 0 we get
F'(0) =0 = F'(n). (4)
2) Solving for F: We solve for F' depending on the different signs of k:

k = 0: The solution of 0 = F”" —kF = F" is F(z) = Ax+ B. By (4) and F'(z) = A,
we get 0 = F'(0) = F'(7) = A, and hence F(z) = B.

k = c* > 0: The general solution of 0 = F" — kF = F" — ¢*F is given by
F(z) = Ae® + Be™“".
By the boundary condition (4),
0= F'(0) = c¢(A - B), 0=F'(r) =c(Ae® — Be™).

Then A = B by he first equation (¢ > 0), and the seconds becomes 0 = cA (e — ™).
Since e > 1,e ¢ <1, A=0and hence F =0 and u = FFG = 0.

k = —c? < 0: The general solution of 0 = F” — kF = F" 4 cF is given by
F(z) = Acos(cz) 4+ Bsin(cx).
Since F'(x) = —Acsin(cx) + Becos(cx), the boundary condition (4) yields
0 = F'(0) = Be, 0 = F'(m) = —Acsin(cr) + Becos(er).

Since ¢ > 0 the first equation yields B = 0, and then the second one gives A = 0 or
c=né€Z If A=0,then F =0 and u = FG = 0. To have u # 0, we need ¢ = n,
k = —n? and then solution is F(x) = Acos(nz).

Conclusion: F # 0 only when k = —n? for n € Z (including n = 0!), and then
F,(z) = By cos(nzx) for any B, e Randn € Norn =0 (F_,, = F,,).

3) Solving for G when F # 0: Le. when k = —n? for n € N and n = 0. Either
observe (and check!) that G(t) = Ce*(+) is a solution, or use the fact that the
equation is separable (or an integrating factor)

%;:(1+2t)kG(t) = /Gtt)dc;:/(uzt)k:dt

=  W(GE) =k{t+t)+c = G(t)=Cett),
Hence we find that Gy (t) = Cne_”Z(th) for C,, e Rand n € Nand n = 0.
4) Conclusion: All solutions u = F(x)G(t) # 0 of (1) and (2) are given by
Un(,) = Fy(2)Gn(t) = Dy cos(nz)e ™ ),

for D, e Rand n € Ny ={0,1,2,...}.
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b) Since (1) and (2) are linear homogeneous equations, we can use part a) and the
superposition principle to conclude that

u(w,t) = 3 un(w,1) = 3 Dy cos(na)e ™+,
n=0 n=0

is a solution of (1) and (2) (when it converges and is termwise differentiable).
By condition (3), we then have

[e.9]

> D, cos(nm)e_"2(1+l2) = u(z,1) = 10cos(z) + >
n=0 n=2

cos(nx)
n?

Comparing coefficients (which uniquely determine the series),

1
Dy =0, Die~? =10, Dne_2”2 =— forn>1
n

Hence the solution of (1) with boundary conditions (2) and (3) is given by

[e.e]
1 2 2
u(z,t) = 10e247° cos(z) + — " 1) cos(na).

Problem 4 Consider the functions
1
fz)=tiz——, and g(z) = eI,
z

Show that f is analytic in z # 0, but g is nowhere analytic.

Solution. Let z = z + iy and note that

‘ 1 . = . . x — iy x . )
f(z):m_;:m_gzz(x—i—zy)— $2+y2 :—y—m-ﬂ(x-i- x2+y2>.
=u(z,y) =v(@y)

Now we will check the Cauchy-Riemann equations hold:

(z° +y%) —x(22) _ 2*—y? 2zy
= — = = —1 - v
ux(xvy) (1‘2 +y2)2 ($2+y2)27 uy(xay) + (1?2 +y2)27
(@ +v?) —y(2y) _ 2° =y’ 2y
U(.ﬁU,y): = ) ’U(l‘,y):l— )
y (22 + 2)2 (22 + y2)2 x (22 + y2)2
and hence u,(z,y) = vy(x,y) and uy(z,y) = —vz(x,y) for all z # 0 (these terms are not

defined at z = 0). Since all these partial derivatives of u,v are continuous, it follows
that f is analytic for z #£ 0.
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Simpler alternative: Compute the derivative f’ from the definition:

flz+ A2) — f(2) iz 4+ A2) — o7z — (i - 1)

! — 1. — 1.
fe) = lm, =%, A, Az
. z—(z+Az)
— lim 1Az — 2(2+Az) = lm i+ # it i
Az—0 Az Az—0  z(z+ Az) 22

for z # 0. Hence f’ exists for all z # 0 and thus f is analytic in C\ {0}.

Since g(z) = e I*I* = ¢~ @*+¥") = 4 4 v for v = 0, and e~ (V") > 0,
ug(2,y) = =22~ H) 3£ 0 = vy (z,y) for  x#0,
uy(z,y) = —2ye” V) £ 0 = —,(z,y) for  y#0,

Hence the Cauchy-Riemann equations only holds at z = 0, and not in any neighbourhood
(or disk) in C. Therefore f is nowhere analytic.

Problem 5 The Laurent series

er i e by,
(2+4)(z—1) ;“”(z -b +n§ z—1)"

converges in the point z = 3. For which of the points

. 1.
21 = —2, 29 = 14 21, =550
does it also converge? Justify your answer.
Solution. Let
1 1
ez €z

z) = = .
/() (22+4)(z—1) (24+2i)(z—2i)(z—1)
The numerator e* has only one singularity - an essential singularity at z = 0. Since the
exponential function has no zeros, the zeros of the denominator are also singularities of
f. Hence all singularities of f are given by 27 =0, 25 =1, 23 = 24, and 2] = —24.

The given Laurent series has centre zp = 1 (a singularity of f). By Laurent’s theorem
there exist unique convergent Laurent series centred at zyg = 1 converging in the largest
annulii where f is analytic. The inner and outer radii follow from computing the distance
from centre to the singularities:

‘Zo—zl‘ 2‘1—0‘ 21,

|20 — 23] = |1 — 2i| = V12 + 22 = /5,

|20 — 24| = |1 + 2i| = V5.
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Hence we get three different Laurent series, each converging in one of the annuli

Aq: 0<’Z—Zo|<1,
Ay 1< |z — 2| < V5,
As: Vb < |z— 2]

The series in this problem converges at z = 3, and
20— 3] =[1-3[=2¢ (1,V5) —  3cA

and the Laurent series converges in As. We then check convergence in z1, 29, z3:

|21 — 20| =|—-2-1=3>V5 = 21 ¢ As, no convergence,
lza — 20| =[1+2i—1]=2¢ (1, \/5) = 29 € As, convergence in zs,
|23 — 20| = |3 — 3i— 1| = 2%+2%:\/g<1 = 23 ¢ As, no convergence.

2 As

As
25 A
25 =2
ZZ
Problem 6

a) Let Sk be the half circle arc z = Re' for 6 € [0, 7]. Show that

eiz
L md?}*}o as R — oo.
R

b) Use the result from a) and residue calculation to calculate the value of the integral

o0 ezfl'
I = —— dux.
/_Do (@ +42 "
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Solution.

a)

b)

et?

. Then by the ML-inequality,
] < max |£(2)|L,
where L = 7R is the length of Sg. If 2 = x 4+ iy € Sk, then y > 0, |z| = R,
7] = [T = Y| = |ele Y = eV <1 (y>0),
and since |22 + 4| > [2]? — 4,
1 1 1 1

(22 4+4)2] 2244 ~ (|22 =4 (R?—4)? (J2] )
We conclude that max.cg, |f(2)| < m and
™R

The integral is equal to the principal part,

=7 de—m [
_/_oo (22 4 4)2 x_RE{l)o/_R(x2+4)2 v

and then for any R > 0, taking Cr = Sg U [ R, R] oriented counterclockwise,

R el d el® d el d 7 I
/_R (22 + 4)? x‘?éR (2% + 1) Z_/SR (242 T

We compute I; using the Residue theorem. Since e%* is analytic and has no zeros,
the poles of f(z) are the zeros of the denominator

(22 +4)% = ((z+ 20) (2 — 20))* = (2 + 20)%(z — 20)2.

So f(z) has order 2 poles at z = +2i, and only z = 2i is encircled by Cr for R > 1.
Using the formula for residues of second order poles, we find that

d 5 eiz jet? etz
Reg f(2) = Iy <(Z\2’“l (z + 2i)2(z\21;12> 52 <(z F2i2 ‘Gz + 2i)3>
i e 2 1 3i
(41)? (4i)3  —16 44 32¢?

Let R > 1. Since Cp is a simple closed curve, and f(z) is analytic on and inside Cr
except at z = 2i, we can use the Residue theorem to conclude that

. 3
I =2miRes /(2) = {2
By part a) we have limp_,o, Io = 0, and can therefore conclude that
3

[= o =g =60



