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Problem 1 (i) Find the solution y(t) of the Volterra integral equation

y(t) ≠ 2
⁄ t

0
e≠2· y(t ≠ ·) d· = e≠t, t Ø 0.

(ii) Find the inverse Laplace transform of the function

F (s) = 3s + 3
s2 + 2s + 2 .

Solution. (i) We use the Laplace transform and note the convolution
⁄ t

0
e≠2· y(t ≠ ·) d· = e≠2t ú y(t).

Laplace transforming and using the convolution theorem we get

L
5
y(t) ≠ 2

⁄ t

0
e≠2· y(t ≠ ·) d·

6
(s) = L

Ë
e≠t

È
(s)

… L [y(t)] (s) ≠ 2L
Ë
e≠2t ú y(t)

È
(s) = L

Ë
e≠t

È
(s)

… Y (s) ≠ 2L
Ë
e≠2t

È
(s) · L [y(t)] (s) = L

Ë
e≠t

È
(s)

… Y (s) ≠ 2 1
s + 2Y (s) = 1

s + 1

… Y (s)
3

1 ≠ 2
s + 2

4
= 1

s + 1

… Y (s) s

s + 2 = 1
s + 1

… Y (s) = s + 2
s(s + 1) .

Taking the inverse Laplace transform, expanding in partial fractions and looking up the
resulting fractions in the table, gives us

y(t) = L≠1 [Y (s)] (t) = L≠1
5

s + 2
s(s + 1)

6
(t) = L≠1

52
s

≠ 1
s + 1

6
(t) = 2 ≠ e≠t.

Alternatively: Complete the square to get Y (s) = s+2
(s+ 1

2 )2≠ 1
4

= s+ 1
2

(s+ 1
2 )2≠ 1

4
+ 3

1
2

(s+ 1
2 )2≠ 1

4
and then by the tables (the sinh and cosh formulas were not available on the exam!)

L≠1 [Y ] = e≠ 1
2 t cosh

31
2 t

4
+ 3e≠ 1

2 t sinh
31

2 t
4

= 2 ≠ e≠t.

(ii) Simply using the table after completing the square we get

f(t) = L≠1
5 3s + 3

s2 + 2s + 2

6
(t) = 3L≠1

5
s + 1

(s + 1)2 + 1

6
(t) = 3e≠t cos(t).
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Alterntive: Complete the square and then use the first shift theorem,

f(t) = 3L≠1
5

s + 1
(s + 1)2 + 1

6
(t) = 3e≠tL≠1

5
s

s2 + 1

6
(t) = 3e≠t cos(t).

Problem 2 Let f(x) = fi
2 sin(x) be defined for x œ [0, fi]. The Fourier cosine series of f is

given by

S(x) = 1 ≠ 2
Œÿ

n=1

1
4n2 ≠ 1 cos(2nx).

(i) Sketch S(x) on the interval [≠2fi, 2fi], (ii) determine the value S0 of the series

S0 = ≠
Œÿ

n=1

(≠1)n

4n2 ≠ 1 ,

and (iii) show that S(x) converges uniformly and absolutely for x œ [≠fi, fi].

Hint: Weierstrass M-test. You can assume that
qŒ

n=1
1

nk converges for k > 1.

Solution. (i) Since f is defined on [0, L] with L = fi, the Fourier cosine series S
of f is the Fourier series of the even 2fi-periodic extension of f . This extension f̃
is continuous since f is continuous and f(0) = 0 = f(fi). Since f Õ(x) = fi

2 cos(x)
for x œ (0, fi), limxæ0+ f Õ(x) = fi

2 , and limxæfi≠ f Õ(x) = ≠fi
2 , the left- and right-hand

derivatives of f̃ exists in all points. Thus by the pointwise convergence result for Fourier
series, S(x) = f̃(x) in every point. We plot f̃ in fig. 1.

≠2fi ≠3fi
2

≠fi ≠fi
2

fi
2

fi 3fi
2

2fi

0.5
1

1.5

S(x)

Figure 1: Fourier cosine series of f(x) = fi
2 sin(x) based on [0, fi]

(ii) Since cos(nfi) = (≠1)n, we see that we can recover S0 from S(fi
2 ):

fi

2 = fi

2 sin
3

fi

2

4
= f

3
fi

2

4
= S

3
fi

2

4
= 1 ≠ 2

Œÿ

n=1

cos
!
2nfi

2
"

4n2 ≠ 1 = 1 + 2S0

=∆ S0 =
fi
2 ≠ 1

2 = fi

4 ≠ 1
2 .
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(iii) To prove uniform and absolute convergence we use the Weierstrass M-test. For
every x œ [≠fi, fi] and n Ø 1, we can bound

----
1

4n2 ≠ 1 cos(2nx)
---- Æ 1

3n2 Æ 1
n2 .

Since
qŒ

n=1
1

n2 converges, by the Weierstrass M-test we get uniform and absolute conver-
gence of the series

qŒ
n=1

1
4n2≠1 cos(2nx) and therefore also for S(x) = 1≠2

qŒ
n=1

1
4n2≠1 cos(2nx).

Problem 3 The temperature of a rod with increasing thermal conductivity over time is
modelled with the partial di�erential equation with boundary conditions

3
1

1 + 2t

4
ˆu

ˆt
≠ ˆ2u

ˆx2 = 0, 0 < x < fi, t > 0, (1)

ˆu

ˆx
(0, t) = ˆu

ˆx
(fi, t) = 0, t Ø 0. (2)

a) Find all solutions of the form u(x, t) = F (x)G(t) of (1) and (2).

b) Given the additional condition in t = 1

u(x, 1) = 10 cos(x) +
Œÿ

n=2

cos(nx)
n2 0 Æ x Æ fi, (3)

find a solution u(x, t) of (1), (2) and (3) for t > 0.

Solution.

a) 1) ODEs for F , G: Setting u(x, t) = F (x)G(t), the PDE (1) is equivalent to

1
1 + 2t

F (x)GÕ(t) ≠ F ÕÕ(x)G(t) = 0.

Assuming F (x)G(t) ”= 0 we can divide by F (x)G(t) and get

1
1 + 2t

GÕ(t)
G(t) = F ÕÕ(x)

F (x) = const = k,

since the left and right hand sides are functions of t and x respectively. Hence we
get two ODEs

F ÕÕ(x) = kF (x), GÕ(t) = (1 + 2t)kG(t).

From the boundary condition (2) we further get

F Õ(0)G(t) = ux(0, t) = 0 = ux(fi, t) = F Õ(fi)G(t)
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so that by assuming G ”© 0 we get

F Õ(0) = 0 = F Õ(fi). (4)

2) Solving for F : We solve for F depending on the di�erent signs of k:

k = 0: The solution of 0 = F ÕÕ ≠kF = F ÕÕ is F (x) = Ax+B. By (4) and F Õ(x) = A,
we get 0 = F Õ(0) = F Õ(fi) = A, and hence F (x) = B.

k = c2 > 0: The general solution of 0 = F ÕÕ ≠ kF = F ÕÕ ≠ c2F is given by

F (x) = Aecx + Be≠cx.

By the boundary condition (4),

0 = F Õ(0) = c(A ≠ B), 0 = F Õ(fi) = c
!
Aec ≠ Be≠c"

.

Then A = B by he first equation (c > 0), and the seconds becomes 0 = cA (ec ≠ e≠c).
Since ec > 1, e≠c < 1, A = 0 and hence F © 0 and u = FG = 0.
k = ≠c2 < 0: The general solution of 0 = F ÕÕ ≠ kF = F ÕÕ + c2F is given by

F (x) = A cos(cx) + B sin(cx).

Since F Õ(x) = ≠Ac sin(cx) + Bc cos(cx), the boundary condition (4) yields

0 = F Õ(0) = Bc, 0 = F Õ(fi) = ≠Ac sin(cfi) + Bc cos(cfi).

Since c > 0 the first equation yields B = 0, and then the second one gives A = 0 or
c = n œ Z. If A = 0, then F © 0 and u = FG = 0. To have u ”= 0, we need c = n,
k = ≠n2 and then solution is F (x) = A cos(nx).
Conclusion: F ”= 0 only when k = ≠n2 for n œ Z (including n = 0!), and then
Fn(x) = Bn cos(nx) for any Bn œ R and n œ N or n = 0 (F≠n = Fn).

3) Solving for G when F ”= 0: I.e. when k = ≠n2 for n œ N and n = 0. Either
observe (and check!) that G(t) = Cek(t+t2) is a solution, or use the fact that the
equation is separable (or an integrating factor)

dG

dt
= (1 + 2t)kG(t) =∆

⁄ 1
G(t) dG =

⁄
(1 + 2t)k dt

=∆ ln(G(t)) = k(t + t2) + c =∆ G(t) = Cek(t+t2).

Hence we find that Gn(t) = Cne≠n2(t+t2) for Cn œ R and n œ N and n = 0.

4) Conclusion: All solutions u = F (x)G(t) ”= 0 of (1) and (2) are given by

un(x, t) = Fn(x)Gn(t) = Dn cos(nx)e≠n2(t+t2),

for Dn œ R and n œ N0 = {0, 1, 2, . . . }.
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b) Since (1) and (2) are linear homogeneous equations, we can use part a) and the
superposition principle to conclude that

u(x, t) =
Œÿ

n=0
un(x, t) =

Œÿ

n=0
Dn cos(nx)e≠n2(t+t2),

is a solution of (1) and (2) (when it converges and is termwise di�erentiable).
By condition (3), we then have

Œÿ

n=0
Dn cos(nx)e≠n2(1+12) = u(x, 1) = 10 cos(x) +

Œÿ

n=2

cos(nx)
n2 .

Comparing coe�cients (which uniquely determine the series),

D0 = 0, D1e≠2 = 10, Dne≠2n2 = 1
n2 for n > 1.

Hence the solution of (1) with boundary conditions (2) and (3) is given by

u(x, t) = 10e2≠t≠t2 cos(x) +
Œÿ

n=2

1
n2 en2(2≠t≠t2) cos(nx).

Problem 4 Consider the functions

f(z) = iz ≠ 1
z

, and g(z) = e≠|z|2
.

Show that f is analytic in z ”= 0, but g is nowhere analytic.

Solution. Let z = x + iy and note that

f(z) = iz ≠ 1
z

= iz ≠ z

zz
= i(x + iy) ≠ x ≠ iy

x2 + y2 = ≠y ≠ x

x2 + y2
¸ ˚˙ ˝

=u(x,y)

+i
1

x + y

x2 + y2
¸ ˚˙ ˝

=v(x,y)

2
.

Now we will check the Cauchy-Riemann equations hold:

ux(x, y) = ≠(x2 + y2) ≠ x(2x)
(x2 + y2)2 = x2 ≠ y2

(x2 + y2)2 , uy(x, y) = ≠1 + 2xy

(x2 + y2)2 ,

vy(x, y) = (x2 + y2) ≠ y(2y)
(x2 + y2)2 = x2 ≠ y2

(x2 + y2)2 , vx(x, y) = 1 ≠ 2xy

(x2 + y2)2 ,

and hence ux(x, y) = vy(x, y) and uy(x, y) = ≠vx(x, y) for all z ”= 0 (these terms are not
defined at z = 0). Since all these partial derivatives of u, v are continuous, it follows
that f is analytic for z ”= 0.
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Simpler alternative: Compute the derivative f Õ from the definition:

f Õ(z) = lim
�zæ0

f(z + �z) ≠ f(z)
�z

= lim
�zæ0

i(z + �z) ≠ 1
z+�z ≠

1
iz ≠ 1

z

2

�z

= lim
�zæ0

i�z ≠ z≠(z+�z)
z(z+�z)

�z
= lim

�zæ0
i + 1

z(z + �z) = i + 1
z2

for z ”= 0. Hence f Õ exists for all z ”= 0 and thus f is analytic in C \ {0}.

Since g(z) = e≠|z|2 = e≠(x2+y2) = u + iv for v = 0, and e≠(x2+y2) > 0,

ux(x, y) = ≠2xe≠(x2+y2) ”= 0 = vy(x, y) for x ”= 0,

uy(x, y) = ≠2ye≠(x2+y2) ”= 0 = ≠vx(x, y) for y ”= 0,

Hence the Cauchy-Riemann equations only holds at z = 0, and not in any neighbourhood
(or disk) in C. Therefore f is nowhere analytic.

Problem 5 The Laurent series

e
1
z

(z2 + 4)(z ≠ 1) =
Œÿ

n=0
an(z ≠ 1)n +

Œÿ

n=1

bn

(z ≠ 1)n

converges in the point z = 3. For which of the points

z1 = ≠2, z2 = 1 + 2i, z3 = 1
2 ≠ 1

2 i

does it also converge? Justify your answer.

Solution. Let

f(z) = e
1
z

(z2 + 4)(z ≠ 1) = e
1
z

(z + 2i)(z ≠ 2i)(z ≠ 1) .

The numerator e
1
z has only one singularity - an essential singularity at z = 0. Since the

exponential function has no zeros, the zeros of the denominator are also singularities of
f . Hence all singularities of f are given by zú

1 = 0, zú
2 = 1, zú

3 = 2i, and zú
4 = ≠2i.

The given Laurent series has centre z0 = 1 (a singularity of f). By Laurent’s theorem
there exist unique convergent Laurent series centred at z0 = 1 converging in the largest
annulii where f is analytic. The inner and outer radii follow from computing the distance
from centre to the singularities:

|z0 ≠ z1| = |1 ≠ 0| = 1,

|z0 ≠ z3| = |1 ≠ 2i| =


12 + 22 =
Ô

5,

|z0 ≠ z4| = |1 + 2i| =
Ô

5.



Solutions to Exam in TMA4120 Mathematics 4K, 27.11.2024 Page 7 of 8

Hence we get three di�erent Laurent series, each converging in one of the annuli

A1 : 0 < |z ≠ z0| < 1,

A2 : 1 < |z ≠ z0| <
Ô

5,

A3 :
Ô

5 < |z ≠ z0|.

The series in this problem converges at z = 3, and

|z0 ≠ 3| = |1 ≠ 3| = 2 œ
1
1,

Ô
5
2

=∆ 3 œ A2

and the Laurent series converges in A2. We then check convergence in z1, z2, z3:

|z1 ≠ z0| = | ≠ 2 ≠ 1| = 3 >
Ô

5 =∆ z1 /œ A2, no convergence,

|z2 ≠ z0| = |1 + 2i ≠ 1| = 2 œ
1
1,

Ô
5
2

=∆ z2 œ A2, convergence in z2,

|z3 ≠ z0| = |1
2 ≠ 1

2 i ≠ 1| =
Ò

1
22 + 1

22 =
Ò

1
2 < 1 =∆ z3 /œ A2, no convergence.

zú
2 = z0

zú
1

zú
3

zú
4

A1

A2

A3

Problem 6

a) Let SR be the half circle arc z = Rei◊ for ◊ œ [0, fi]. Show that
⁄

SR

eiz

(z2 + 4)2 dz æ 0 as R æ Œ.

b) Use the result from a) and residue calculation to calculate the value of the integral

I =
⁄ Œ

≠Œ

eix

(x2 + 4)2 dx.
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Solution.

a) Let f(z) = eiz

(z2+4)2 . Then by the ML-inequality,

|I| Æ max
zœSR

|f(z)|L,

where L = fiR is the length of SR. If z = x + iy œ SR, then y Ø 0, |z| = R,

|eiz| = |ei(x+iy)| = |eix≠y| = |eix|e≠y = e≠y Æ 1 (y Ø 0),

and since |z2 + 4| Ø |z|2 ≠ 4,
1

|(z2 + 4)2| = 1
|z2 + 4|2

Æ 1
(|z|2 ≠ 4)2 = 1

(R2 ≠ 4)2 (|z| = R).

We conclude that maxzœSR |f(z)| Æ 1
(R2≠4)2 and

|I| Æ fiR

(R2 ≠ 4)2 æ 0 as R æ Œ.

b) The integral is equal to the principal part,

I =
⁄ Œ

≠Œ

eix

(x2 + 4)2 dx = lim
RæŒ

⁄ R

≠R

eix

(x2 + 4)2 dx,

and then for any R > 0, taking CR = SR fi [≠R, R] oriented counterclockwise,
⁄ R

≠R

eix

(x2 + 4)2 dx =
j

CR

eiz

(z2 + 4)2 dz ≠
⁄

SR

eiz

(z2 + 4)2 dz = I1 ≠ I2.

We compute I1 using the Residue theorem. Since eiz is analytic and has no zeros,
the poles of f(z) are the zeros of the denominator

(z2 + 4)2 = ((z + 2i)(z ≠ 2i))2 = (z + 2i)2(z ≠ 2i)2.

So f(z) has order 2 poles at z = ±2i, and only z = 2i is encircled by CR for R > 1.
Using the formula for residues of second order poles, we find that

Res
z=2i

f(z) = lim
zæ2i

d
dz

A

(XXXXz ≠ 2i)2 eiz

(z + 2i)2(XXXXz ≠ 2i)2

B

= lim
zæ2i

A
ieiz

(z + 2i)2 ≠ 2 eiz

(z + 2i)3

B

= ie2i2

(4i)2 ≠ 2 e2i2

(4i)3 = e≠2

≠16

3
i ≠ 2 1

4i

4
= ≠ 3i

32e2 .

Let R > 1. Since CR is a simple closed curve, and f(z) is analytic on and inside CR

except at z = 2i, we can use the Residue theorem to conclude that

I1 = 2fii Res
z=2i

f(z) = 3fi

16e2 .

By part a) we have limRæŒ I2 = 0, and can therefore conclude that

I = lim
RæŒ

I1 ≠ lim
RæŒ

I2 = 3fi

16e2 .


